期刊文献+

线性递减的粒子群优化算法 被引量:3

A Particle Swarm Optimization Algorithm of Linear Decreasing
下载PDF
导出
摘要 粒子群优化算法(PSO)是一种仿生类的全局优化算法,它借助记忆与反馈机制完成了寻优搜索。该算法受到了鸟类觅食活动的启发而得,其基本思想源于对鸟类简化社会模型的研究及行为模拟,其中的每个个体充分利用自身与群体的智能,不断地调整学习,最终得到满意解。该算法常用于求解非线性问题、组合优化问题等。因其具有易理解,易实现,控制参数少,收敛速度快等优点,该算法一经提出就吸引了广泛的关注,逐渐成为一个新的研究热点。然而粒子群优化算法也有些不足,如搜索精度不高,易早熟以及易陷入局部极值等。而且算法在搜索后期也有产生振荡现象的可能,使得算法收敛起来会较慢。所以,文中就粒子群在迭代后期所出现的振荡现象进行了研究,并作出改进,提出了一种飞行时间单调递减的粒子群优化算法。新算法改善了算法的寻优能力,减小了粒子在寻优过程中的振荡现象。 Particle Swarm Optimization ( PSO) algorithm is a global optimization algorithm of bionics,with the help of memory and feed-back mechanism to complete the search for optimum. The algorithm is inspired by the foraging birds. The basic idea is the result of the study on birds simplified social model and behavior simulation,each of these individuals makes full use of their own and the collective in-telligence,constantly adjusts learning,finally gets satisfied solution. The algorithm is often used to solve nonlinear problem,combinatorial optimization problem and so on. Because of the advantages which is easy to understand and implement,with less control parameters and fast convergence speed,the algorithm is attracted widespread attention since proposing,gradually becoming a new research hotspot. How-ever,there exists a premature convergence,particle swarm optimization algorithm is easy to fall into local optimum and search accuracy of inherent defects,and the algorithm may appears oscillation phenomenon in the late iterations, algorithm ' s convergence speed is slow. Therefore,based on particle swarm in the late iterations of iterative phenomenon is studied and improved,design a flight time linear de-creasing particle swarm optimization algorithm. The new algorithm improves the searching capability,reduces the particle in the oscillation phenomenon in the process of optimization.
出处 《计算机技术与发展》 2014年第10期67-70,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61170322)
关键词 粒子群 优化 振荡现象 particle swarm optimization oscillation phenomenon
  • 相关文献

参考文献13

  • 1Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [ M ]. San Francisco: Morgan Kanfmann ,2001.
  • 2Engelbrecht A P. Fundamentals of computational swarm in- telligence [ M ]. New York: Wiley,2009.
  • 3Das Sharma K, Chatterjee A, Rakshit A. A hybrid approachfor design of stable adaptive fuzzy contdllers employing Lya- punov theory and particle swarm optimization [ J ]. IEEE Transactions on Fuzzy Systems,2009,17 ( 2 ) :329-342.
  • 4Sun lun,Fang Wei,Xu Wenbo. A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two- dimensional IIR digital filters [ J ]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010,57(2) :141-145.
  • 5Gao Hao, Xu Wenbo, Sun Jun, et al. Multilevel thresholding for image segmentation through an improved quantum-be- haved particle swarm algorithm [ J ]. IEEE Transactions on Instrumentation and Measurement,2010,59 (4) : 934 -946.
  • 6Voumvoulakis E M, Hatziargyriou N D. A particle swarm optimization method for power system dynamic security con- trol [ J ]. IEEE Transactions on Power Systems,2010,25 ( 2 ) : 1032-1041.
  • 7Li Changhe, Yang Shengxiang. An adaptive learning particle swarm optimizer for function optimization [ C ]//Proc of IEEE congress on evolutionary computation. Trondheim: IEEE ,2009:381-388.
  • 8Shi Yuhui, Eberhart R. A modified particle swarm optimizer [ C ]//Proceedings of the IEEE international conference on evolutionary computation. Anchorage, AK: IEEE, 1998 : 69 - 73.
  • 9Eberhart R C, Shi Yuhui. Particle swarm optimization:devel- opments, applications and resources [ C ]//Proceedings of the 2001 congress on evolutionary computation. Seoul: IEEE, 2001:81-86.
  • 10杨亚平,谭瑛,曾建潮.二次微粒群算法及其参数选择[J].计算机仿真,2007,24(1):174-177. 被引量:2

二级参考文献18

  • 1潘峰,涂序彦,陈杰,付继伟.协调粒子群优化算法—HPSO[J].计算机工程,2005,31(1):169-171. 被引量:10
  • 2[1]Shi Y,Eberhart R.Parameter selection in particle swarm optimization[A],Proc of the 7th Annual Confon Evolutionary Programming[C],New York,1998:591-600.
  • 3[2]Suganthan P N.Particle Swarm Optimiser with Neighbouthood Operator[A],proc IEEE Int Conf.evolutionary Computation[C],Washington DC,1999:69-73.
  • 4J Kennedy and R Eberhart,Particle swarm optimization[C].Proc.IEEE Int.Conf.Neural Networks,1995.1942-1948.
  • 5J Kennedy,R C Eberhart.A Discrete Binary Version of the Particle Swarm Algorithm[C].Pro.1997 Conf.on Systems,Man,and Cybernetics.Piscataway,NJ:IEEE Service Center,1997.4104-4109.
  • 6Y Shi,R C Eberhart.A Modified particle swarm optimizer[C].Proc.IEEE Int.Conf.Evolutionary,1998.69-73.
  • 7M Clerc.The Swarm and the Queen:Toward a Deterministic and Adaptive Particle Swarm Optimization[C],Proc.of the Congress on Evolutionary Computation,1951-1957,Washington,DC,1999.
  • 8P N Suganthan.Particle Swarm Optimization with Neighbourhood Operator[C].In:Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,NJ,IEEE Service Center,1999.1958-1962.
  • 9P J Angeline.Using Selection to Improve Particle Swarm Optimization[C].1998.Anchorage,Alaska,USA.IEEE International Conference on Evolutionary Computation,1998.84-89.
  • 10M Lovbherg,T K Rasmussen.Hybrid Particle Swarm Optimizer with Breeding and Subpopulation[C].Proc.of the Genetic and Evolutionary Computation Conference,San Fracdisco,USA,2001.

共引文献6

同被引文献24

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部