期刊文献+

回复式离散神经网络的特征子空间估值(英文) 被引量:1

Eigensubspace Estimation Using Discrete Recurrent Neural Networks
下载PDF
导出
摘要 提出了用两种回复式离散神经网络模型研究正定对称矩阵的特征子空间估值问题:第1种模型是非线性神经网络,用于计算最大特征值及其特征向量;第2种模型属于线性神经网络,用于计算相应于最大特征值的特征子空间。详细研究了两种离散神经回路网络模型的动力学性质并用于特征子空间估值。 This paper proposes two models of discrete recurrent neural networks to study the problem of eigensubspace estimation for positive definite symmetric matrix. The first model is a class of nonlinear neural networks. It is used for estimating the largest eigenvalue and one of its corresponding eigenvectors. The second model is a class of linear neural networks which estimates the eigensubspace corresponding to the largest eigenvalue. Dynamic properties of these two classes of discrete recurrent neural network models are studied and used for eigensubspace estimation.
作者 梁金明 章毅
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2002年第4期349-355,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金资助项目 编号:69871005~~
关键词 回复式离散神经网络 特征子空间 神经网络 正定对称矩阵 估值 eigenvalue eigenvector eigensubspace recurrent neural network
  • 相关文献

参考文献13

  • 1[1]Diamantaras K I, Hornik K, Strintzis M G. Optimal linear compression under unreliable representation and robust PCA neural models. IEEE Trans.: Neural Networks, 1999, 10(5): 1 186-1 195
  • 2[2]Luo F, Unbehauen R, Cichocki A. A minor component analysis algorithm. Neural Networks, 1997, 10(2): 291-297
  • 3[3]Luo F, Unbehauen R. A minor subspace analysis algorithm. IEEE Trans.: Neural Networks, 1996, 8(5): 1 149-1 153
  • 4[4]Luo F, Unbehauen R, Li Y D. A principal component analysis algorithm with invariant norm. Neurocomputing, 1995, 8: 213-221
  • 5[5]Mathew G, Reddy V U. Development and analysis of a neural network approach toPisarenko's harmonic retrieval method. IEEE Trans.: Signal Processing, 1994, 42(3): 663-667
  • 6[6]Mathew G, Reddy V U. Orthogonal eigensubspace estimation using neural networks. IEEE Trans.: Signal Processing, 1994, 42(7):1 803-1 811
  • 7[7]Mathew G, Reddy V U, Dasgupta S. Adaptive estimation of eigensubspace. IEEE Trans.: Signal Processing, 1995, 43(2): 401-411
  • 8[8]Oja E, Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. of Math. Anal. Appl., 1985, 106:69-84
  • 9[9]Oja E. Principal components, minor components, and linear neural networks. Neural Networks, 1992,5: 927-935
  • 10[10]Reif K, Lou F, Unbehauen R. The exponential stability of the invariant norm PCA algorithm.: IEEE Trans.: Circuits and Sys.-II, 1997, 44(10): 873-876

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部