期刊文献+

基于K-means的空中交通流模式识别 被引量:5

Air Traffic Flow Pattern Recognition Based on K-means
下载PDF
导出
摘要 空域系统容量与空中交通态势密切相关。对空中交通态势的精确把握可有效降低当前大流量情况下的空域系统压力、提高管制员有效决策水平。提出了一种基于K-means聚类方法的空中交通流识别方法,有助于清晰把握空中交通整体态势。首先分析了空中交通流特性,然后根据雷达数据统计了主要航段在15 min内飞机架次,聚类识别为多种交通流模式,最后通过计算时段内所有飞机在扇区的总飞行时间,验证了该方法的有效性。 Airspace system capacity is closely related to the air traffic situation. Accurate grasp of the situation of air traffic airspace system can effectively reduce the airspace system pressure under the current large flow situation,and improve the effective decision-making level of controllers. A method of air traffic flow identification method based on K-means clustering is presented,helping to grasp the overall situation of air traffic clearly. The air traffic flow characteristics firstly is analyzed. Then count the aircraft sorties on the main leg within 15 minutes according to radar data,clustering and identified as a variety of traffic patterns. Finally the effectiveness of this method by calculating the total flight time of all aircraft in the sector is verified.
出处 《科学技术与工程》 北大核心 2014年第27期301-303,309,共4页 Science Technology and Engineering
基金 国家科技支撑计划(2011BAH24B10) 国家自然科学基金委员会与中国民用航空局联合项目(U1333108) 天津市应用基础与前沿技术研究计划(14JCQNJC04500)资助
关键词 交通拥挤 交通流模式 聚类 飞机架次 congestion traffic flow pattern cluster aircraft sorties
  • 相关文献

参考文献8

二级参考文献45

共引文献28

同被引文献30

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部