期刊文献+

基于全排序与混沌多样性的高维目标进化算法 被引量:3

Many-objective Evolutionary Algorithm Based on Full Ranking Computer Engineering and Applications
下载PDF
导出
摘要 当前大部分多目标进化算法采用Pareto排序为种群个体指定适应度值;然而随着优化目标个数增加,种群中非支配个体的比例越来越大,造成上述算法的搜索能力迅速下降。针对高维(4个以上)目标优化问题,提出了一种全排序方法;该排序方法与Pareto排序具有一致性,并且能够对非支配解进行比较;因此基于全排序的多目标进化算法不受目标个数增加的影响。为了提高算法的优化效果,设计了一个混沌映射算子,用来周期性地初始化种群,以保证种群的多样性与均匀分布。最后,采用标准测试问题对所提算法与著名的非支配快速排序遗传算法(NSGA2)进行了实验比较。结果表明在高维目标优化问题中,所提算法无论在收敛精度,还是算法运行效率上都高于NSGA2算法。 Most of multiohjective evolutionary algorithm adopt Pareto-ranking and their searching ability decrease rapidly with the increase of objective number. That is because the proportion of nondominated individuals in the population is big. For high-dimensional multi-objective optimization problem, it proposes a full ranking method. The ranking is consistent with Pareto ranking, and the nondominated solution can be compared by the full ranking. In order to improve the efficiency of optimization algorithm, it designs a chaotic model to periodically initialize population. Finally, the proposed algorithm and a well-known nondominated sorting genetic algorithm (NSGA2) are compared using the standard test problems. The experiment results show that the proposed algorithm is better than NSGA2 algorithm both in convergence accuracy and efficiency of the algorithm.
出处 《科学技术与工程》 北大核心 2014年第28期108-112,共5页 Science Technology and Engineering
关键词 多目标进化 高维目标 全排序 混沌 multiobjeetive evolutionary algorithm high-dimension objective full ranking chaotic model
  • 相关文献

参考文献17

  • 1Coello A C, Lamont G B. Applications of multi-objective evolutionary algorithms. Singapore : World Scientific, 2004:213-215.
  • 2吴坤安,严宣辉,陈振兴.一种基于Pareto排序的混合多目标进化算法.计算机工程与应用,http://www.cnki.net/kcms/detail/11.2127.TP.1542.024.html.2013-06.26.
  • 3Eskandari H, Geiger C D. A fast Pareto genetic algorithm approach for solving expensive muhiobjective optimization problems. Journal of Heuristics, 2008 ; 14 (3) :203-241.
  • 4Deb K, Amrit P, Sameer A, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comp, 2002; 6 (2): 182-197.
  • 5Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a corn- parative case study and the strength pareto approach. IEEE Trans Evol Comp, 1999; 3(1): 257-271.
  • 6Knowles J D, Come D W. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computa- tion, 2000; 8(1) : 149-172.
  • 7Hajela P, Lin C Y, Genetic search strategies in muhicriterion optimal design. Structural Optimization, 1992 ; 4 ( 1 ) : 99-107.
  • 8Ponsich A. A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Transactions on Evolutionary Computa- tion, 2013 ; 17(3) :321-344.
  • 9王宏,林丹,李敏强.一种求解多目标资源受限项目调度的遗传算法[J].计算机工程与应用,2008,44(7):1-4. 被引量:9
  • 10姚金涛,林亚平,张明武,童调生.一种基于决策图贝叶斯网络的强度Pareto进化算法[J].计算机学报,2005,28(12):1993-1999. 被引量:7

二级参考文献61

  • 1Fonseca C M, Fleming P J. Genetic algorithm for multiobjective optimization: Formulation, discussion and generalization [C]. Proc of 5th ICGA. San Mateo: Morgan Kaufmann Publishers, 1993 : 416-423.
  • 2Deb K, Amrit P, Sameer A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J] IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197.
  • 3Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach [J]. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271.
  • 4Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2) 149-172.
  • 5Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design[ J ]. Structural and Multidiseiplinary Optimization, 1992, 4(2): 99-107.
  • 6Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Proc of 1st Int Conf on Genetic Algorithms and Their Application. Hillsdale: L. Erlbaum Associates Inc, 1985: 93-100.
  • 7Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: John Wiley and Sons Inc, 2001.
  • 8Coello C A C, Lamont G B. Applications of multiobjective evolutionary algorithms [M]. Singapore: World Scientific Publisher, 2004.
  • 9Coello C A C, Lamont G B, Veldhuizen D A V. Evolutionary algorithm for solving multi-objective problems[M]. New York: Kluwer Academic Publisher, 2007.
  • 10Purshouse R C, Fleming P J. Evolutionary manyobjective optimization: An exploratory analysis [C]. Proc of 2003 IEEE Congress on Evolutionary Computation. Canberra: IEEE Service Center, 2003: 2066-2073.

共引文献63

同被引文献36

  • 1周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 2Milan S,Vaelav H,Roger B.图像处理、分析与机器视觉[M].艾海舟,吴勃等译北京:人民邮电出版社,2003:83-127.
  • 3章毓晋.图像工程(下册):图像理解与机器视觉[M].北京:清华大学出版社2000.
  • 4Li C Y,Wang X Y,Eberl S,et al. Supervised variational model with statistical inference and its application in medical image segmentation[J]. IEEE Transactions on B iomedical Engineering2015,62 (1):196 -207.
  • 5Lkl C J,Wechsler H.Gabor feature based classification using the enhanced Fisher Linear Discrirninant Model for face reeognition[J].IEEE Transactions on Image Proeesshag,2002,11 (4):467-476.
  • 6Zhang W,Shan S,Gao W,et al.Loeal Gabor bnaary pat- tern histogram sequence(LGBPHS):a novel non-statis- ileal model for face representation and recognition[J]// Proc.of the 10th IEEE Inte. Conf. on Computer Vision, Be0ing,October 17-21,2005:786-791.
  • 7YANG Shi,LIU Hongcheng,GAO Liang,et al.Cellular particle swarm optimization[J].Information Sciences,2011,181(20):4 460-4 493.
  • 8ATABAK E,MAGHSUD S,SEYDA T,et al.A simulated annealingalgorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts[J].Computers & Industrial Engineering,2011, 61(1):171-178.
  • 9WANNAPORN T,ARIT T.A combination of shuffled frog leaping and fuzzy logic for flexible job shop scheduling problems[J].Procedia Computer Science,2011,6(6):69-75.
  • 10KENNEDY J,EBERHART R C.Particle swarm optimization[C]. Proceedings of International Conference on Neural Networks. Piscataway,N J,USA:IEEE Press,1995:1 942-1 948.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部