期刊文献+

Oxide-on-graphene field effect bio-ready sensors 被引量:1

Oxide-on-graphene field effect bio-ready sensors
原文传递
导出
摘要 Electrical detection schemes using nanoscale devices offer fast and label-free alternatives to biosensing techniques based on chemical and optical interactions. Here we report on the design, fabrication, and operation of oxide-on-graphene ion-sensitive field effect sensor arrays using large-area graphene sheets synthesized by chemical vapor deposition. In this scheme, HfO2 and SiO2 thin films are deposited atop the graphene sheet and play the dual role of the sensing interface, as well as the passivation layer protecting the channel and electrodes underneath from direct contact with the electrolyte. We further demonstrate the functionalization of the SiO2 surface with 3-aminopropyltrimethoxysilane (APTMS). The oxide-on-graphene sensors operate in solution with high stability and a high average mobility of 5,000 cm2/(V's). As a proof of principle, we demonstrate pH sensing using the bare or the APTMS-functionalized SiO2 as the sensing surface. The measured sensitivities, 46 mV/pH and 43 mV/pH, respectively, agree well with existing studies. We further show that by applying the solution gate voltage in pulse, the hysteresis in the transfer curve of the graphene transducer can be eliminated, greatly improving the ionic potential resolution of the sensor. These experiments demonstrate the potential of oxide-on-graphene ion-sensitive field effect sensors in on-chip, label-free and real-time biosensing applications.
出处 《Nano Research》 SCIE EI CAS CSCD 2014年第9期1263-1270,共8页 纳米研究(英文版)
关键词 GRAPHENE BIOSENSOR pH sensor ISFET APTMS LABEL-FREE 生物传感器 氧化物 场效应 石墨 化学气相沉积 SiO2薄膜 生物传感技术 离子敏感
  • 相关文献

参考文献44

  • 1Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensor. Actuat. B-Chem.2003, 88, 1-20.
  • 2Johannessen, E. A.; Wang, L.; Cui, L.; Tang, T. B.; Ahrnadian, M.; Astaras, A.; Reid, S. W. J.; Murray, A. F.; Flyrm, B. W.; Beaumont, S. P.; et al. Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE 7". Bio.-Med. Eng.2004, 51,525-535.
  • 3Zhang, G. J.; Ning, Y. Silicon nanowire biosensor and itsapplications in disease diagnostics: A review. Anal. Chim. Acta. 2012, 749, 1-15.
  • 4Patolsky, F.; Zheng, G.; Lieber, C. Nanowire-based biosensors. Anal. Chem. 2006, 78, 4260-4269.
  • 5Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhausser, A.; Schoning, M. J. Possibilities and limitations of label- free detection of DNA hybridization with field-effect-based devices. Sensor. Actuat. B-Chem. 2005, 111,470-480.
  • 6Bunimovich, Y. L.; Shin, Y. S.; Yeo, W. S.; Amori, M.; Kwong, G.; Heath, J. R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 2006, 128, 16323-16331.
  • 7Gonqalves, D.; Prazeres, D.; Chu, V.; Conde, J. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosen. Bioelectron. 2008, 24, 545-551.
  • 8Rothberg, J. M.; Hinz, W.; Rearick, T. M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J. H.; Johnson, K.; Milgrew, M. J., Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348-352.
  • 9Sorgenfrei, S.; Chiu, C.; Gonzalez Jr., R. L.; Yu, Y. J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 2011, 6, 126-132.
  • 10Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahrny, T. M.; Reed, M. A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519-522.

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部