期刊文献+

12/14混合定子磁悬浮开关磁阻电机磁链特性及磁链建模研究 被引量:3

Research on Characteristic and Modeling of Flux Linkage for 12 /14 HSBSRM
下载PDF
导出
摘要 12/14混合定子磁悬浮开关磁阻电机(HSBSRM)的磁链是计算电磁转矩和径向悬浮力的基础,是实现电机稳定旋转和悬浮的前提。针对常规解析法建立的12/14HSBSRM磁链模型的局限性,提出了基于贝叶斯证据框架最小二乘支持向量机(LS-SVM)的磁链建模方法。通过有限元法分析了HSBSRM悬浮绕组与转矩绕组磁链的耦合关系、悬浮绕组间磁链耦合关系绕组磁链与径向位移关系、悬浮绕组磁链与转子位置角关系,建立了基于贝叶斯证据框架LSSVM的磁链模型,仿真结果表明所提方法能够快速准确的建立磁链模型。 Abstr ac:t The flux linkage of 12/14 hybrid stator-pole bearingless switched reluctance motor ( HSBSRM) is the basis to calculate the electromagnetic torque and the radial levitation force , which is also the premise of realizing of the stabil-ity rotation and reliable suspension of motor .Aiming at the limitation of 12/14 HSBSRM model built by traditional ana-lytical method , a novel modeling method based on least squares support vector machine (LS-SVM) within the Bayesian evidence framework has been proposed .Based on the analysis on the coupling relationship between the torque windings ’ flux curves and suspending windings ’ flux curves , the coupling relationship between suspending windings ’ flux curves , the relationship between the torque windings ’ flux curves and radial displacement , the relationship between suspending windings’ flux curves and rotor position are analyzed by the finite element method (FEM).The flux linkage model of HSBSRM based on LS-SVM within Bayesian evidence framework has been established .Simulation results show that the proposed model has high accurate precision and rapid calculation speed .
出处 《电测与仪表》 北大核心 2014年第17期42-48,共7页 Electrical Measurement & Instrumentation
基金 国家自然基金资助项目(51377074,51307077) 南京工程学院引进人才启动基金资助项目(YKJ201216)
关键词 混合定子 磁悬浮开关磁阻电机 磁链 有限元 贝叶斯证据框架 最小二乘支持向量机 hybrid stator - pole, bearingless switched reluctance motor ( BSRM), flux linkage, finite element method(FEM), Bayesian evidence framework, least squares support vector machine (LS -SVM)
  • 相关文献

参考文献11

  • 1H. Wang, Y. Wang, X. Liu, et al. Design of novel bearingless switched reluctance motor [J]. Electric Power Applications, lET, 2012, 6 (2) : 73 -81.
  • 2邓智泉,杨钢,张媛,曹鑫,王晓琳.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139-146. 被引量:99
  • 3孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型[J].中国电机工程学报,2007,27(12):33-40. 被引量:72
  • 4曹鑫,邓智泉,杨钢,杨艳,王晓琳.无轴承开关磁阻电机麦克斯韦应力法数学模型[J].中国电机工程学报,2009,29(3):78-83. 被引量:54
  • 5Vladimir Vapnik. The nature of statistical learning theory [M]. spring- er, 1999.
  • 6Johan AK Suykens,Joos Vandewalle. Least squares support vector ma- chine classifiers [J]. Neural processing letters, 1999, 9 (3): 293 -300.
  • 7Johan AK Suykens, Lukas Lukas, Joos Vandewalle. Sparse least squares support vector machine classifiers [C]. ESANN' 2000 Euro- pean Symposium on Artificial Neural Networks, 2000:37 -42.
  • 8M. M. Adankon, M. Cheriet, A. Biem. Semisupervised Learning Using Bayesian Interpretation: Application to IS- SVM [J]. Neural Net- works, IEEE Transactions on, 2011, 22(4) : 513 -524.
  • 9T. Van Gestd,J. A. K. Suykens,D. E. Bacstaens, el at. Financial time series prediction using least squares support vector machines within the evidence framework [J]. Neural Networks, IEEE Transactions on. 2001. 12(4), 809 -821.
  • 10阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528. 被引量:21

二级参考文献54

共引文献191

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部