摘要
用待定系数法构造了求解二维抛物型方程的高精度分支稳定的显式差分格式.格式的截断误差达到O(Δt2+Δx4).证明了当1/15≤r≤1/9时,差分格式是稳定的.通过数值试验,比较了差分格式的解和精确解的区别,说明了差分格式的有效性.
An explicit difference scheme with high accuracy and branching stability is constructed for solving two-dimension parabolic type equation by the method of undetermined parameters. The truncation error of the scheme is O(△t2+△x4). The difference scheme is proved to be stable if 1/15≤r≤1/9. The numerical experiment shows the numerical solutions of difference scheme and the precise solutions are matched and the difference scheme is effective.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2014年第5期11-14,21,共5页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(61070165)
广东省教育部产学研结合项目(2011B090400458)
关键词
二维抛物型方程
显式差分格式
截断误差
two-dimension parabolic equation
explicit difference schemes
truncation error