期刊文献+

一步喷涂法制备低黏附的超疏水颗粒表面 被引量:1

One-step spray-coating process for the fabrication of low adhesive superhydrophobic particle surfaces
下载PDF
导出
摘要 采用硬脂酸和十八烷基三氯硅烷分别对商业来源的ZnO、TiO2和SiO2颗粒进行修饰得到相应的疏水颗粒.然后利用简单的一步喷涂法通过喷涂所制备的疏水颗粒的无水乙醇悬浮液制备自清洁型的超疏水颗粒表面.通过红外光谱(FT-IR)、X-射线光电子能谱(XPS)、X-射线粉末衍射(XRD)证明低表面能物质成功地修饰在这些氧化物表面;用扫描电镜(SEM)观察超疏水表面形貌发现表面团聚现象比较严重;用DSA100型接触角测量仪测量所制备的超疏水颗粒表面对水滴的静态接触角高达160°,滚动角小于5°,说明该表面具有良好的超疏水性能. Hydrophobic particles are obtained by functionalizing the commercially available particles such as ZnO, TiO2 and SiO2 with low energy materials like stearic acid(SA) and octadecyltriehlorosilane (OTCS). And then a facile one-step spray-coating process is developed for the fabrication of superhydrophobic particle surfaces by spraying hydrophobic particle suspensions onto desired substrate. The as-prepared superhydrophobic particle surfaces exhibit both superhydrophobicity and self-cleaning properties. The samples are characterized by Fourier transformation infrared spectra (FT-IR), X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD), indicating that ZnO, TiO2 and SiO2 are successfully modifed with low energy materials. The as-prepared surfaces are charaterized by scanning electron microscopy(SEM), showing that the agglomeration of these surfaces is serious, which leads to superhydrophobicity. The superhydrophobic surfaces show a contact angle larger than 160° and a sliding angle smaller than 5°, which is measured on a Kruss DSA 100 apparatus at ambient temperature. The results indicate that these surfaces have good superhydrophobicity.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2014年第5期60-65,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(21301141) 西北师范大学青年教师科研能力提升计划资助项目(NWNU-LKQN-12-6)
关键词 超疏水 接触角 自清洁性能 低黏附 superhydrophobic contact angle self-cleaning property low adhesion
  • 相关文献

参考文献25

  • 1ZHANG Xi, SHI Feng, NIU Jia, et al. Superhydrophobic surfaces: From structural control to functional application[J].J Mater Chem, 2008, 18: 621-633.
  • 2LIU Ke-song, YAO, Xi, JIANG Lei. Recent developments in bio-inspired special wettability [J ]. CtJem Soc Rez,, 2010, 39:3240-3255.
  • 3BLOSSEY R. Self-cleaning surfaces virtual realities [J]. Nat Mater, 2003, 2: 301-306.
  • 4LI Jian, LIU Xiao-hong, YE Yin-ping, etal. A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property[J]. ApplSurf Sci, 2011, 258: 1772-1775.
  • 5GAO Xuefeng, YAN Xin, YAO Xi, etal. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. AdvMater, 2007, 19: 2213- 2217.
  • 6CAO Liang-liang, JONES A K, SLIKKA V K, et al. Anti-icing superhydrophobic coatings [ J ]. Langmuir, 2009, 25:12444- 12448.
  • 7OU Jun-fei, HU Wei-hua, XUE Mingshan, et al. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Appl Mater Interfaces, 2013, 5: 3101-3107.
  • 8LI Jian, YAN Long, OUYANG Qiong-lin, et al. Facile fabrication of translucent superamphiphobic coating on paper to prevent liquid pollution[J]. Chem EngJ, 2014, 246: 238-243.
  • 9MIN Wei-Lun, JIANG Bin, JIANG Peng. Bioinspired self-cleaning antireflection coating [J]. AdvMater, 2008, 20: 3914-3918.
  • 10ZHANG Shi-yan, LU Fei, TAO Lei, et al. Bio- inspired anti-oil-fouling chitosan coated mesh for oil/ water separation suitable for broad pH range and hyper-saline enviromnents [ J ]. ACS Appl Mater Interfaces, 2013, 5: 11971-11976.

二级参考文献19

  • 1WANG Shu-tao, LIN Fin, JIANG Lei. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Adv Mater, 2006, 18: 767-770.
  • 2CARBONELL L, RATCHEV P, CALUWAERTS R, et al. Dry oxidation mechanisms of copper in trenches[J]. MicroelectronEng, 2002, 64: 63-71,.
  • 3LAU K K S, BICO J, TEO K B K, et al, Superhydrophobic carbon nanotube forests[J]. Nano Lett, 2003, 3:1701-1705.
  • 4ERBIL H Y, Transformation DEMIREL A L, of a simple AVCI Y, et al. plastic into a superhydrophobie surface[J]. Science, 2003, 299: 1377 -1380.
  • 5WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced amphiphilic surfaces [ J ]. Nature, 1997, 388: 431-432.
  • 6MIWA M, NAKAJIMA A, FUJISHIMA A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces [J]. Langmuir, 2000, 16: 5754-5760.
  • 7ZHAO Nan, SHI Feng, WANG Zhi-qiang, et al. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces [J]. Langmuir, 2005, 21: 4713-4716.
  • 8SHIBUICHI S, ONDA T, SATOH N, et al. Super water-repellent surfaces resulting from fracial structure[J]. J Phys Chem, 1996, 100: 19512- 19517.
  • 9HOSONO E, FUJIHARA S, HONMA I, et al. Superhydrophobic perpendicular nanopin film by the bottom-up process [J]. J Am Chem Soc, 2005,127: 13458-13459.
  • 10CAO L, PRICE T P, WEISS M, etal. Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films [J]. Langmuir, 2008, 24: 1640-1643.

共引文献5

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部