摘要
在Web2.0时代,越来越多的消费者在购物网站、点评类网站以及社交类网站上发表自己对产品或服务的相关看法,由此对企业产生了巨大的影响。针对用户在线评论行为所产生的价值,以传统的RFM模型为基础构建了基于评论行为的RFMP模型。同时将购买RFM和评论RFMP模型进行结合,提出了适用于线上企业的客户终身价值评价方法,采用熵值法进行了指标权重的确定,并最终选取大众点评网的实际用户数据进行了传统客户终身价值与改进客户终身价值的对比。通过对用户群进行细分,为企业提供了更加精准的营销决策及管理建议。
In the era of Web 2. 0, more and more customers prefer publishing online reviews to share their consumption experience in purchased websites, review websites and social networking websites, which have a great impact on enterprises. This paper proposes a RFMP model based on the traditional RFM to estimate the value of customer's review behavior. Meanwhile we propose an enterprises CLV model combining the online purchase behavior which we use RFM model and review behavior which we use RFMP model, adopting entropy evaluation method to calculate the index weight instead of AHP or other subjective methods. Finally, based on our CLV measurement model, we propose a novel customer segmentation method which can give more deep description for innovative marketing strategies.
出处
《统计与信息论坛》
CSSCI
2014年第9期91-98,共8页
Journal of Statistics and Information
基金
国家自然科学基金重点项目<面向不确定性的Web2.0用户创作内容管理研究>(71231002)