期刊文献+

有关平均差距的三个不等式 被引量:1

Three Inequalities Involving the Difference Between Means
下载PDF
导出
摘要 利用方差来估计它们的差距成为一个研究热点.利用最值压缩定理给出了n元算术平均、几何平均和调和平均的差的三个新的上下界估计. Recently,using variance to estimate their difference has become a hot point topic.By means of compressed independent variables theorem,this paper gives three new upper and lower bounds of the difference involving arithmetic mean,geometric mean and harmonic mean of n positive real numbers.
作者 郭忠
出处 《湖州师范学院学报》 2014年第8期13-18,共6页 Journal of Huzhou University
关键词 算术平均 几何平均 不等式 最值压缩定理 arithmetic mean geometric mean harmonic mean compressed independent variables theorem
  • 相关文献

参考文献5

  • 1杨克昌.平均值不等式的一个证明与加强.湖南数学通讯,1986,(4):19-20.
  • 2密特利诺维奇DS.解析不等式[M].张小萍,王龙,译.北京:科学出版社,1987.
  • 3Bullen P S.Handbook of means and their inequalities[M].The Netherlands:Kluwer Academic Publishers,2003.
  • 4Aldaz J M.Self- improvement of the inequality between arithmetic and geometric means[J].Journal of Mathernatieal Inequalities, 2009(3) :213 - 216.
  • 5郭忠.一个平均不等式的反向及其类似[J].湖南理工学院学报(自然科学版),2012,25(2):11-13. 被引量:1

二级参考文献6

  • 1D.S.密特利诺维奇.解析不等式[M].张小萍,王龙,译.北京:科学出版社,1987.
  • 2杨克昌.平均值不等式的一个证明与加强.湖南数学通讯,1986,(4):19-20.
  • 3Cartwright D. I., Field M. J.. A refinement of the arithmetic mean-geometric mean inequality[J]. Proc. Amor. Math.Soc.,1978(71): 36--38.
  • 4P.S.bullen. Handbook of Means and Their Inequalities[M]. Netherlands: Kluwer Academic Publishers, 2003:156.
  • 5Mercer A McdJmproved upper and lower bounds for the difference of An.Gn[J]. Rocky Mountain J.Math., 2001 (31 ): 553-560.
  • 6J. M. Aldaz. Self-improvement of the inequality between arithmetic and geometric means[J]. Journal of Mathematical Inequalities, 2009(3): 213-216.

共引文献5

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部