期刊文献+

一种改进的颜色粒子滤波目标跟踪算法 被引量:2

An Improved Color-Based Particle Filter Algorithm for Target Tracking
下载PDF
导出
摘要 为实现运动目标精确跟踪,克服跟踪过程中目标的非线性运动以及由目标形变、遮挡和光照等因素带来的影响,本文提出了一种改进的颜色粒子滤波方法.算法从提高目标模型描述能力入手,首先对直方图加权函数进行了改进,使模型对区域特征描述更加合理;然后针对颜色直方图特征对光照明敏感、易受环境干扰等缺点,将目标由颜色特征空间映射到对光照稳定、抗几何失真能力强的局部熵特征空间,构建了颜色局部熵观测模型;同时设计了目标模板的自适应更新策略,当目标受到严重干扰的时候动态调节粒子数目.实验结果表明相比传统的颜色粒子滤波算法,本文算法具有更好的鲁棒性,能够在存在遮挡、光照变化、非线性运动等情况下实现稳定跟踪. To overcome the disadvantages that the traditional particle filters based on color histogram is susceptible to environmental interference and illumination variations, an improved particle filter algorithm was proposed. This article starts from improving the description ability of the target feature model. First, the histogram weighted function was optimized. Second, for the shortcoming of the color feature, a new color local entropy target observation model was constructed by mapping the target from color feature space to local entropy space. In addition, in order to make the model better adjust to environmental interference and target deformation, an adaptive updating strategy of the target model was designed and the number of particle was adjusted dynamically. Experimental results demonstrate that the proposed algorithm is effective.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第8期836-842,共7页 Transactions of Beijing Institute of Technology
基金 北京理工大学985二期经费资助项目
关键词 目标跟踪 粒子滤波 颜色局部熵 target tracking particle filter color local entropy
  • 相关文献

参考文献22

  • 1Gordon N J, Salmond D J. Novel approach to non-linear /non-Gaussian Bayesian state estimation[C]//Radar and Signal Processing, Proceedings F. [S. 1. ] : lET Digital Library, 1993,140(2) :107 - 113.
  • 2Pan P, Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18 (9): 1268- 1279.
  • 3Isard M, Blake A. Condensation--conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998,29(1) :5 - 28.
  • 4Perez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[C] /// Proceedings of the European Conference on Computer Vision, 2002:661 -675.
  • 5Nummiaro K, Koller-Meier E B, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003,21(1) -.100 - 110.
  • 6Birchfield S T, Rangarajan S. Spatiograms versus histograms for region-based tracking[C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:[IEEE], 2005 : 1158 - 1163.
  • 7del-Blanco C R, Garcia N, Salgado L, et al. Object tracking from unstabilized platforms by particle filtering with embedded camera ego motion[C]//Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance. [ S. 1. ]: IEEE, 2009:400 - 405.
  • 8张涛,费树岷,王丽丽.基于色彩相关直方图和粒子滤波的目标跟踪[J].东南大学学报(自然科学版),2011,41(B09):134-138. 被引量:7
  • 9Leichter I, Lindenbaum M, Rivlin E. Mean shift tracking with multiple reference color histograms[J]. Computer Vision and Image Understanding, 2010, 114(3) :400 - 408.
  • 10裴立志,王润生.基于多个颜色分布模型的粒子滤波跟踪算法[J].电路与系统学报,2011,16(1):92-96. 被引量:2

二级参考文献66

  • 1荆仁杰 叶秀清.计算机图象处理[M].杭州:浙江大学出版社,1992..
  • 2孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985..
  • 3柳健.基于局部熵差的快速图象匹配方法.华中理工大学研究报告[M].,1995..
  • 4Gordon N,Salmond D.Novel approach to non-linear and non-Gaussian Bayesian state estimation[J].Proc.of Institute Electric Engineering,1993,140(2):107-113.
  • 5Isard M,Blake A.Condensation-conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28.
  • 6Van der MERME R,DOUCET A.de FREITAS N,WAN E.The Unscented Particle Filter[R].London:Cambridge University,2000.
  • 7Katja Nummiaro,Esther Koller-Meier,Luc Van Gool.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
  • 8Zhou S K,Chellappa R,Moghaddam B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transactions on Image Processing,2004,13(11):1491-1506.
  • 9Ido Leichter,Michael Lindenbaum,Ehud Rivlin.Mean Shift tracking with multiple reference color histograms[J].Computer Vision and Image Understanding,2010,114:400-408.
  • 10Crisan,D,A Doucet.A survey of convergence results on particle filtering methods for practitioners[J].IEEE Trans.Speed and Audio Proc.,2002.10(3):173-185.

共引文献62

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部