期刊文献+

基于机器视觉的钢球表面缺陷快速提取算法 被引量:5

The Rapid Extracting Algorithm for Steel Ball Surface Defect based on Machine Vision
下载PDF
导出
摘要 针对目前轴承钢球表面缺陷提取方法的不足,设计了一种通过图像来提取钢球产品表面缺陷的算法。该算法首先利用分段线性灰度算法对钢球表面微小缺陷进行增强,再结合最大熵来实现对钢球表面缺陷的自动分割,最后采用投影原理和二维联合统计算法,完成对缺陷的快速提取和区域归类。实验表明本文算法对钢球表面五类缺陷的提取可以达到很好的效果,在basler工业相机,900×560分辨率的条件下,算法耗时小于30ms,能够满足钢球表面缺陷检测的实时性要求。 Aiming at the analysing of the characteristics of steel ball surface flaw, an extraction algorithm,ex-tracting and classifying the surface flaw by the projection principle and two-dimension-combined statistical algo-rithm, improving the slight flaw analysis effect by a piecewise linear gray level algorithm and achieving automatic segmentation by the largest maximum entropy, is designed in this paper to discover the steel ball surface flaw by vi-sion. According to the experiment results, five kinds of steel ball surface flaw can be detected effectively and the al-gorithm computation time consuming lasts less than 30ms by a basler industrial camera in the 900 × 560 resolution . The algorithm can meet the requirement for real-time in industrial vision detection.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第9期58-61,共4页 Laser Journal
基金 国家自然科学基金(No.61075007)
关键词 缺陷检测 机器视觉 图像分割 区域归类 Defect detection Machine vision Image segmentation Region clustering
  • 相关文献

参考文献9

二级参考文献51

  • 1陈俊,李红.利用模拟退火遗传算法实现图像阈值分割[J].应用数学,2005,18(S1):107-110. 被引量:3
  • 2陶文兵,刘李漫,田金文,柳健.采用遗传算法与最大模糊熵的双阈值图像分割[J].信号处理,2005,21(6):684-687. 被引量:9
  • 3徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 4范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 5Donoho D L and Johhstone I M. Ideal special adaptation by wavelet shrinkage[ J]. Biometrika, 1994,81(3) :425 - 455.
  • 6Do M N, VETTERLI M. The eontourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing,2005,14(12) :2091 -2106.
  • 7Cunha A L da, Zhou i P, and Do M N. The nonsubsampled Contourlet transform: Theory, design and application [ J]. IEEE Transactions. on Image Processing,2,006 15(10) : 3089 - 3101.
  • 8W. Shenqian, Z. Yuanhua, Z. Daowen. Adaptive shrinkage denoising using neighbourhood characteristic [ J ]. Electronics Letters, 2002, 38 (ll) :502- .503.
  • 9G. Y. Chen, T. D. Bui, A. Krzyzak. Image denoising using neighbouring wavelet coefficients [C]. ICASSP' 04. IEEE International Conference, 2004,2:2917-920.
  • 10Jean - Luc Starck, E. J. Cantles, D. L. Donoho. The curvelet transform for image denoising[ J]. IEEE Trans. On Image Processin, 2002,11 (6) : 670 - 684.

共引文献56

同被引文献43

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部