期刊文献+

结合Shearlet变换和果蝇优化算法的甲状腺图像融合 被引量:3

Thyroid Image Fusion Based on Shearlet Transform and Fruit Fly Optimization Algorithm
下载PDF
导出
摘要 针对甲状腺肿瘤超声图像复杂度高和SPECT图像边界模糊的特点,结合Shearlet变换能够捕捉图像细节信息和果蝇优化算法可靠性高的优势,提出了Shearlet变换和果蝇优化算法相结合的图像融合算法。首先,用Shearlet变换对已精确配准的源图像进行分解,分别得到高低频子带系数。高频子带系数采用区域能量取大的融合规则,低频子带系数使用改进的加权融合规则,并把果蝇优化算法引入低频融合过程,以互信息作为适应度函数来获取最优值,克服了原加权融合算法互信息低的缺点。最后,用Shearlet逆变换得到融合后的图像。实验结果表明,此算法在主观视觉效果和客观评价指标上优于其他融合算法。 According to the characteristics of ultrasound images with high complexity and SPECT image with blurred boundary, combining the advantage of the Shearlet transform can capture the detail information of images and the high reliability of the Fruit Fly Optimization Algorithm, an image fusion algorithm based on Shearlet trans-form and Fruit Fly Optimization Algorithm is proposed. Firstly, the Shearlet transform is used to decompose the reg-istered source images, thus the low frequency sub-band coefficients and high frequency sub-band coefficients can be obtained. The high frequency sub-band coefficients are fused by the region energy maximum. The fusion rule of the low frequency sub-band coefficients is based on the method of modified weighted fusion, in order to overcome the disadvantage of low mutual information in primary weighted fusion algorithm, the Fruit Fly Optimization Algorithm is introduced in fusion process, the mutual information as fitness function is used to calculate the optimum solution. Finally, the fused image is reconstructed by inverse Shearlet transform. The experimental results demonstrate that the proposed method outperforms the other methods in term of visual evaluation and objective evaluation.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第9期70-73,78,共5页 Laser Journal
基金 河北省教育厅科学研究计划项目(2010218) 河北大学医工交叉研究中心开放基金项目(BM201103)
关键词 图像处理 图像融合 SHEARLET变换 改进的加权融合 果蝇优化算法 区域能量 Image processing Image fusion Shearlet transform Modified weighted fusion Fruit Fly Optimiza-tion Algorithm Region energy
  • 相关文献

参考文献10

  • 1孙嘉伟,许晓君,蔡秋茂,许燕君,顾江.中国甲状腺癌发病趋势分析[J].中国肿瘤,2013,22(9):690-693. 被引量:211
  • 2孙志敏,李晓江.甲状腺结节的诊断进展[J].现代肿瘤医学,2013,21(4):908-911. 被引量:7
  • 3Bratm B113lank W. Ultrasonography of the thyroid and para- thyroid gland[J]. Der Internist, 2006, 47(7): 729-746.
  • 4Johnson N A, Tublin M E, Ogilvie J B. Parathyroid imag- ing: technique and role in the preoperative evaluation of pri- mary hyperparathyroidism[J]. American Journal of Roent- genology, 2007, 188(6): 1706-1715.
  • 5Easley G R, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Ap- plied and Computational Harmonic Analysis, 2008, 25(1): 25-46.
  • 6Gao Guo Rong, Xu Lu Ping, Feng Dong Zhu. Multi-focus image fusion based on non-subsampled Shearlet transform [J]. Image Processing, 2013, 6(7):633-639.
  • 7苗启广,石程,许鹏飞,杨眉,史耀波.Multi-focus image fusion algorithm based on shearlets[J].Chinese Optics Letters,2011,9(4):25-29. 被引量:11
  • 8Pan Wen Tsao. A new fruit fly optimization algorithm: tak- ing the financial distress model as an example[J]. Knowl- edge-Based Systems, 2012, 26(2): 69-74.
  • 9王联国,洪毅,赵付青,余冬梅.一种简化的人工鱼群算法[J].小型微型计算机系统,2009,30(8):1663-1667. 被引量:30
  • 10郑伟,孟繁婧,田华,郝冬梅,吴颂红.基于混合蛙跳算法的SPECT-B超甲状腺图像配准[J].河北大学学报(自然科学版),2013,33(3):305-311. 被引量:7

二级参考文献65

共引文献260

同被引文献43

  • 1鲍程辉,贺新光,蒋卫国.非下采样Contourlet变换和脉冲耦合神经网络相结合的遥感图像融合方法[J].遥感信息,2015,30(2):50-56. 被引量:5
  • 2胡朝芬,黄之杰,罗来华.医学图像融合技术研究进展[J].医疗卫生设备,2010,31(4):157-160.
  • 3DO M N,VETTERLI M.Contourlets[C]//Beyond Wavelets.[S.l.]:[s.n.],2002:1-27.
  • 4ARTHUR L C,ZHOU J P,DO M N.The nonsubsampled contourlet transform:Theory,design,and applications [J].IEEE Trans Image Processing,2006,15(10):3089-3101.
  • 5CHAI YI,LI HUAFENG,U ZHAOFEL Multifocus image fusion scheme using focused region detection and multi- resolution[J].Optics Communications,2011,284(19):14-16.
  • 6STILLER C,Le6n PUENTE F,KRUSE M.Information fu- sion for automotive applications-Anoverview[J].Infor- mation Fusion,2011,12(4):244-252.
  • 7ZHANG QIANG,GUO BAO-LONG.Multifocus image fu- sion using the nonsubsampled Contourlet transform[J]. Signal Processing(S0165-1684),2009,89(7):1334-1346.
  • 8CUNHA A L,ZHOU J P,D0 M N.The non-subsampled contourlet transform:theory,design and applications[J]. IEEE Trans on Image Processing,2006,15(10):3089-3101.
  • 9LI X,QIN S Y.Efficient fusion for infrared and visible- imagesbased oncompressive sensing principle[J].IET Im- age Processing,2011,5(2):141-14.
  • 10WANG Z B,MA Y D,CHENG F Y,et al.Review of Pulse-coupled Neural Networks[J].Image and Vision Computing,2010,28:5-13.

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部