期刊文献+

基于加权PCA分析的三维点云模型对称性检测算法 被引量:6

Symmetry detection of point-based 3D models algorithm based on weighted PCA
原文传递
导出
摘要 对普通PCA(principal component analysis)算法进行了改进,使之能用来检测点云模型中存在的平面反射对称性。算法的执行过程如下:首先,使用每个点元的面积作为权重,执行一次加权PCA确定一个近似的对称平面作为初始平面;然后,采用迭代的方法逐步调整上述的对称平面,使之趋向于真正的对称平面(主对称平面)。在每次迭代过程中,算法根据一个距离度量来更新每个点元的权重,通过新的权重执行加权PCA计算来确定一个新的对称平面。如果当前的对称平面与上一次迭代中的对称平面足够接近或者迭代次数超过了给定的阈值,迭代就会终止,从而计算获得整体点云的主对称平面。实验结果表明即使对于非完美对称的模型,该算法也能精确地找出模型的主对称平面。 The common PCA (principal component analysis)algorithm was improved,which can be used to detect the presence of plane reflection symmetry of point-based 3 D model.The iteratively re-weighted PCA process works as fol-lows:Firstly,an initial approximate symmetry plane is computed through a weighted PCA process.Then,the area of each surfel is calculated as its weight.Thereafter,the approximate symmetry plane is refined iteratively.In each itera-tion,we firstly update each surfel’s weight based on a distance metric at that surfel,and secondly conduct the weighted PCA to refine the approximate symmetry plane.The iteration will stop to give the final approximate symmetry plane un-til the new symmetry plane and the previous one are closely enough or the number of iterations goes beyond a threshold. According to the experiment results,the primary symmetry plane of the models that are not perfectly symmetric can also be found by the proposed algorithm.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第9期166-170,共5页 Journal of Shandong University(Natural Science)
关键词 点云模型 形状分析 对称性检测 PCA分析 point-based 3 D model shape analysis symmetry detection PCA analysis
  • 相关文献

参考文献23

  • 1BERNER A, WAND M, MITRA N J, et al. Shape analysis with subspace symmetries[J]. Computer Graphics Forum, 2011, 30(2):277-286.
  • 2MINOVIC P, ISHIKAWA S, KATO K. Symmetry identification of a 3D object represented by octree [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5):507-514.
  • 3ZABRODSKY H, WEINSHALL D. Using bilateral symmetry to improve 3D reconstruction from image sequences[J]. Computer Vision and Image Understanding, 1997, 67(1):48-57.
  • 4KAZHDAN M, FUNKHOUSER T, RUSINKIEWICZ S. Symmetry descriptors and 3D shape matching [C]//Proceedings of Eurographics Symposium on Geometry Processing.[S.l.]:[s.n.],2004:115-123.
  • 5PODOLAK J, SHILANE P, GOLOVINSKIY A, et al. A planar-reflective symmetry transform for 3D shapes [J]. ACM Transactions on Graphics, 2006, 25(3):549-559.
  • 6RUSTAMOV R M. Augmented planar reflective symmetry transforms [J]. The Visual Computer, 2008, 24(6):423-433.
  • 7MARTINET A, SOLER C, HOLZSCHUCH N, et al. Accurate detection of symmetries in 3D shapes [J]. ACM Transactions on Graphics, 2006, 25(2):439-464.
  • 8THRUN S, WEGBREIT B. Shape from symmetry [C]//Proceedings of IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society,2005:1824-1831.
  • 9SIMARI P, KALOGERAKIS E, SINGH K. Folding meshes: hierarchical mesh segmentation based on planar symmetry [C]//Proceedings of the 4th Eurographics Symposium on Geometry Processing, 2006:111-119.
  • 10MITRA N J, GUIBAS L J, PAULY M. Partial and approximate symmetry detection for 3D geometry[J]. ACM Transactions on Graphics, 2006, 25(3):560-568.

同被引文献65

  • 1邱泽阳,宋晓宇,张定华.离散数据中的孔洞修补[J].工程图学学报,2004,25(4):85-89. 被引量:7
  • 2柯映林,朱伟东.基于局部特征匹配的对称面提取算法[J].计算机辅助设计与图形学学报,2005,17(6):1191-1195. 被引量:13
  • 3陈飞舟,陈志杨,丁展,叶修梓,张三元.基于径向基函数的残缺点云数据修复[J].计算机辅助设计与图形学学报,2006,18(9):1414-1419. 被引量:31
  • 4Liu Jingchen, Slota G, Zheng Gang, et al. Symmetry Detection from Real World Images Competition 2013: Summary and Results [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recogni- tion. Washington D. C. , USA: IEEE Press, 2013: 200- 205.
  • 5Hel O H, Kaplan C S. Computational Symmetry in Computer Vision and Computer Graphics [ M]- Boston, USA : Now Publishers Inc. , 2010.
  • 6Xiang Yin, Li Shutao. Symmetric Object Detection Based on Symmetry and Centripetal-sift Edge De- scriptor[ C]//Proceedings of the 21 st International Conference on Pattern Recognition. Washington D. C. , USA :IEEE Press ,2012 : 1403-1406.
  • 7Sun Yu, Bhanu B. Reflection Symmetry-integrated Image Segmentation[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2012,34 ( 9 ) : 1827-1841.
  • 8Loy G,Zelinsky A. Fast Radial Symmetry for Detecting Points of Interest [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 8 ) : 959- 973.
  • 9Tuzikov A V,Colliot O,Bloch I. Brain Symmetry Plane Computation in MR Images Using Inertia Axes and Optimization [ C ]//Proceedings of the 16th International Conference on Pattern Recognition. Washington D. C. , USA : IEEE Press, 2002 : 516-519.
  • 10Loy G,Eklundh J O. Detecting Symmetry and Symmetric Constellations of Features [ M ]. Berlin, Germany : Springer, 2006.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部