期刊文献+

Suitability mapping of global wetland areas and validation with remotely sensed data 被引量:7

Suitability mapping of global wetland areas and validation with remotely sensed data
原文传递
导出
摘要 With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we used hydrologic and climatic variables in combination with Compound Topographic Index (CTI) data in modeling the average annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between poten- tial wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling re- suits showed that the total area of global wetland reached 3.316× 10^7 km^2. Remote-sensing-based validation based on a compi- lation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the im- pact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset. With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we used hydrologic and climatic variables in combination with Compound Topographic Index(CTI) data in modeling the average annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between potential wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling results showed that the total area of global wetland reached 3.316×107 km2. Remote-sensing-based validation based on a compilation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the impact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset.
出处 《Science China Earth Sciences》 SCIE EI CAS 2014年第10期2283-2292,共10页 中国科学(地球科学英文版)
基金 supported by National High-tech R&D Program of China (Grant No. 2009AA12200101)
关键词 global wetland suitability distribution water balance model CTI accuracy assessment 湿地分布 遥感数据 验证 适宜性 绘图 地下水位 建模过程 数据集
  • 相关文献

参考文献5

二级参考文献56

共引文献129

同被引文献49

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部