期刊文献+

Inequalities for the Gaussian hypergeometric function 被引量:1

Inequalities for the Gaussian hypergeometric function
原文传递
导出
摘要 we study the monotonicity of certain combinations of the Gaussian hypergeometric functions F(-1/2,1/2;1;1- xc) and F(-1/2- δ,1/2 + δ;1;1- xd) on(0,1) for given 0 < c 5d/6 < ∞ andδ∈(-1/2,1/2),and find the largest value δ1 = δ1(c,d) such that inequality F(-1/2,1/2;1;1- xc) <F(-1/2- δ,1/2 + δ;1;1- xd) holds for all x ∈(0,1). Besides,we also consider the Gaussian hypergeometric functions F(a- 1- δ,1- a + δ;1;1- x3) and F(a- 1,1- a;1;1- x2) for given a ∈ [1/29,1) and δ∈(a- 1,a),and obtain the analogous results. we study the monotonicity of certain combinations of the Gaussian hypergeometric functions F(-1/2,1/2;1;1- xc) and F(-1/2- δ,1/2 + δ;1;1- xd) on(0,1) for given 0 c 5d/6 ∞ andδ ∈(-1/2,1/2),and find the largest value δ1 = δ1(c,d) such that inequality F(-1/2,1/2;1;1- xc) F(-1/2- δ,1/2 + δ;1;1- xd) holds for all x ∈(0,1). Besides,we also consider the Gaussian hypergeometric functions F(a- 1- δ,1- a + δ;1;1- x3) and F(a- 1,1- a;1;1- x2) for given a ∈ [1/29,1) and δ ∈(a- 1,a),and obtain the analogous results.
出处 《Science China Mathematics》 SCIE 2014年第11期2369-2380,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11371125,11171307 and 61374086) Natural Science Foundation of the Hunan Province(Grant No.14JJ2127) Natural Science Foundation of the Zhejiang Province(Grant No.LY13A010004)
关键词 Gaussian hypergeometric function MONOTONICITY INEQUALITY 超几何函数 不等式 高斯 单调性 最大值 类似
  • 相关文献

参考文献30

  • 1Abramowitz M, Stegun I A. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1966.
  • 2Alzer H, Qiu S L. Monotonieity theorems and inequalities for the complete elliptic integrals. J Comput Appl Math, 2004, 172:289-312.
  • 3Anderson G D, Barnard R W, Richards K C, et al. Inequalities for zero-balanced hypergeometric functions. Trans Amer Math Soc, 1995, 347:1713-1723.
  • 4Anderson G D, Qiu S L, Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations. Pacific J Math, 2000, 192:1- 37.
  • 5Anderson G D, Qiu S L, Vuorinen M. Precise estimates for differences of the Gaussian hypergeometric function. J Math Anal Appl, 1997, 215:212-234.
  • 6Anderson G D, Vamanamurthy M K, Vuorinen M. Distortion functions for plane quasiconformal mappings. Israel J Math, 1988, 62:1-16.
  • 7Anderson G D, Vamanamurthy M K, Vuorinen M. Hypergeometric functions and elliptic integrals. In: Srivastava H M, Owa S, eds. Current Topics in Analytic Function Theory. River Edge: World Scientific Publishing, 1992, 48-85.
  • 8Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997.
  • 9Bariez A. Turan type inequalities for generalized complete elliptic integrals. Math Z, 2007, 256:895- 911.
  • 10Barnard R W, Pearee K, Richards K C. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J Math Anal, 2000, 31:693-699.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部