期刊文献+

MEMS仿生矢量水听器的微结构优化设计 被引量:2

Microstructure Optimization Design of the MEMS Bionic Vector Hydrophone
下载PDF
导出
摘要 压阻式的MEMS仿生矢量水听器的固有频率和灵敏度之间是相互制约的,即随微结构的各个尺寸(悬臂梁的长、宽、高及中心连接体的边长)的变化,二者呈现相反的趋势。通过理论分析和推导,得出每个尺寸对水听器固有频率和灵敏度的影响程度不一致,可以合理地设计微结构的各个尺寸(最优解),使矢量水听器在具有相同固有频率条件下得到最大灵敏度。根据常用的微结构,通过Matlab软件计算出了微结构的一组最优解。通过ANSYS软件仿真验证,与常用的微结构相比,该微结构固有频率下降了7%,而灵敏度提高了1倍。最后,测试结果表明:两组尺寸的水听器频带范围为20~1000Hz,并且尺寸优化后的水听器比优化前的灵敏度平均高5dB。 The relationship between inherent frequency and sensitivity of piezoresistive MEMS bionic vector is mutual restricted. The changing tendency of inherent frequency and sensitivity with the microstructure sizes (the length, width and height of the cantilever beam and the side length of the center connection body) is opposite. Through theoretical analysis and deduction, the effects of each size on the inherent frequency and sensitivity of the hydrophone are different, so the microstructure sizes (optimal solutions) are designed reasonably to obtain a maximum sen- sitivity for the vector hydrophone at the same inherent frequency. According to the commonly used microstructure, a group of optimal solutions of the microstructure were calculated by using Matlab software. Through simulation and verification of ANSYS software, compared with the commonly used microstructure, the inherent frequency of the microstructure decreases by 7%, but the sensitivity is doubled. Finally, the test results show that the frequency band ranges of thehydrophones with two groups of different dimensions are from 20 Hz to 1000 Hz, and the sensi- tivity of the optimized hydrophone is averagely 5 dB higher than that of the previous one.
出处 《微纳电子技术》 CAS 北大核心 2014年第9期576-582,共7页 Micronanoelectronic Technology
基金 国家高技术研究发展计划(863计划)资助项目(2013AA09A412) 国家自然科学基金资助项目(61127008) 国家自然科学基金资助项目(51205374) 山西省青年科技研究基金资助项目(2012021013-3)
关键词 MEM仿生矢量水听器 固有频率 灵敏度 频带 ANSYS 最优解 MEMS bionic vector hydrophone inherent frequency sensitivity frequency band ANSYS optimal solution
  • 相关文献

参考文献14

二级参考文献59

  • 1孙贵青,李启虎.声矢量传感器研究进展[J].声学学报,2004,29(6):481-490. 被引量:101
  • 2陈丽洁,张鹏,徐兴烨,王福江.矢量水听器综述[J].传感器与微系统,2006,25(6):5-8. 被引量:51
  • 3陈丽洁,杨士莪.压阻式新型矢量水听器设计[J].应用声学,2006,25(5):273-278. 被引量:14
  • 4孙贵青.博士学位论文[D].哈尔滨工程大学,2001(13—14).
  • 5陈洪娟.硕士学位论文[D].哈尔滨工程大学,2002,6—24.
  • 6何祚嫡 赵玉芳.声学理论基础[M].国防工业出版社,1981.315-327.
  • 7何祚庸 赵玉芳.声学理论基础[M].北京:国防工业出版社,1994.315-328.
  • 8陈洪娟.[D].哈尔滨工程大学,2002:17-18.
  • 9费腾.矢量水听器校准装置.声学技术,2005,:289-289.
  • 10G’Spain G L.Proc.Oceans’92.Newport,Rhode Island.1992,346-351.

共引文献131

同被引文献13

  • 1郭静,张国军,王续博,张文栋.MEMS仿生矢量水听器微结构的有限元分析(英文)[J].强激光与粒子束,2015,27(2):136-140. 被引量:6
  • 2KOVACS G T A.微传感器与微执行器全书[M].张文栋,董海峰,李永红,等译.北京:科学出版社,2003.
  • 3HANNA I R,SILVERMAN M E.A history of cardiac auscultation and some of its contributors[J].Am J Cardiol,2002,90(3):259-267.
  • 4KELMENSON D A,HEATH J K,BALL S A,et al.Prototype electronic stethoscope vs.conventional stethoscope for auscultation of heart sounds[J].Journal of Medical Engineering&Technology,2014,38(6):307-310.
  • 5LENG S,TAN R S,CHAI K T,et al.The electronic stethoscope[J].Biomedical Engineering Online,2015,14(66):1-37.
  • 6REDLARSKI G,GRADOLEWSKI D,PALKOWSKI A.A system for heart sounds classification[J].Plos One,2014,9(11):e112673.
  • 7SMITH C.Transducer for sensing body sounds:US,US6661897B2[P].2003.
  • 8GRUNDLEHNER B,BUXI D.Methods to characterize sensors for capturing body sounds[C]//Proceedings of the International Conference on Body Sensor Networks.Dallas,TX,USA,2011:59-64.
  • 9ZHOU J,JIANG T,JIAO J,et al.Design and fabrication of a micromachined gyroscope with high shock resistance[J].Microsystem Technologies,2014,20(1):137-144.
  • 10彭黎,谈群,邱涤珊.面向管控一体化网络的网管系统模型与关键技术研究[J].计算机工程与应用,2012,48(24):1-6. 被引量:15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部