期刊文献+

具有集值约束的弱Nash平衡问题解的存在性

Existence of Weak Nash Balance Problem with Set-valued Constraints
下载PDF
导出
摘要 利用不动点定理证明了一类具有集值约束的弱Nash平衡问题解的存在性,推广了以往文献的结果。 The fixed point theorem was used to prove the existence of a type of weak Nash balance problem, which extended the results of past literature.
作者 帅维成
出处 《重庆理工大学学报(自然科学)》 CAS 2014年第9期139-142,共4页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金天元基金资助项目(11226231)
关键词 非线性标量化函数 自然拟凸 集值映射 nonlinear quantitative function natural quasi-convex set-valued mapping
  • 相关文献

参考文献10

  • 1Blackwell O. An Analog of the Minimax Theorem for Vector Payoffs[ J ]. Pacific Journal of Mathematics, 1956,6:1 -8.
  • 2Ghose D, Prasad U R. Solution Concepts in Two -Persons Multicriteria Games [ J ]. Journal of Optimization Theory and Applica- tions, 1989,63 : 167 - 188.
  • 3Fernandez F R, Hinojosa M R, Puerto J. Games with Vector Payoffs [ J ]. Journal of Optimization Theory and Applications,2002, 112:331 -360.
  • 4Corley H W. Games with Vector Payoffs [ J ]. Journal of Optimization Theory and Applications, 1985,42:491 -498.
  • 5张文燕,陈纯荣,李声杰.集值映射的广义对称向量拟平衡问题(英文)[J].运筹学学报,2006,10(3):24-32. 被引量:5
  • 6Fu J Y. Symmetric Vector Quasi-Equilibrium Problems[J]. Journal of Mathematical Analysis and Applications ,2003,285:708 -713.
  • 7Nash J, Noncooperative Games, Ann [ J ]. Math, 1951,54:286 - 295.
  • 8Gerth C ,Weidner P. Nonconvex Separation Theorems and Some Applications in Vector Optimization[ J ]. Journal of Optimization Theory and Applications, 1990,67:297 - 320.
  • 9Istratescu V I. Fixed Point Theory, An Introduction [ Z ]. Direidel Publishing Company, Dordrecht, Boston, London, 1981.
  • 10Aubin J P, Ekeland I. Applied Nonlinear Analysis [ M ]. New York:John Wiley and Sons, 1984.

二级参考文献9

  • 1Li SJ, Chen GY, Teo KL and Yang XQ. Generalized Minimax Inequalities for Set-Valued Mappings. Journal of Mathematical Analysis and Applications, 2003, 281: 707-723.
  • 2Luc DT. Theory of Vector Optimization. Springer, Berlin, 1989.
  • 3Park S. Fixed Points and Quasi-Equilibrium Problems. Mathematical and Computer Modelling, 2001, 34: 947-954.
  • 4Aubin JP and Ekeland I. Applied Nonlinear Analysis. John Wiley and Sons, New York, 1984.
  • 5Berge C. Espaces topologiques, fonctions multivoques, deuxieme ed. Dunod, Paris, 1966.
  • 6Fu JY. Symmetric Vector Quasi-Equilibrium Problems. Journal of Mathematical Analysis and Applications, 2003, 285: 708-713.
  • 7Farajzadeh AP. On the Symmetric Vector Quasi-Equilibrium Problems. Journal of Mathematical Analysis and Applications, 2005, in press.
  • 8Giannessi F. Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer, Dordrecht, 2000.
  • 9Li SJ, Teo KL and Yang XQ. Generalized Vector Quasi-Equilibrium Problems. Mathematical Methods of Operations Research, 2005, 61: 385-397.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部