期刊文献+

SDG故障诊断方法在核动力装置中的应用研究 被引量:4

Research on Fault Diagnosis With SDG Method for Nuclear Power Plant
下载PDF
导出
摘要 核动力装置运行状态的诊断关系到装置运行的安全性和可靠性。针对核动力装置系统复杂,难以建立数学模型的特点,本文将基于定性模型的符号有向图(SDG)方法应用于核动力装置中进行故障诊断,并以核动力装置主冷却剂系统为研究对象,提出了相应的建模方法并建立了SDG模型,根据所建立的模型开发了基于SDG方法的核动力装置故障诊断系统,并以蒸汽发生器传热管破裂(SGTR)事故和弹棒事故为例对该系统的诊断推理过程进行了分析。仿真结果表明,基于SDG的方法在核动力装置中能有效诊断故障,并能提供故障传播路径,具有良好的解释性,可为运行人员决策提供帮助。 The diagnosis of the operational state of a nuclear power plant (NPP) plays an important role for the safety and reliability of NPP operation .In this paper ,the qual-itative method for fault diagnosis based on signed directed graph (SDG) was applied in a complex NPP system because the mathematical model of NPP is difficult to be built . The reactor coolant system (RCS) was taken as the diagnostic object ,and the approach of building SDG model was presented and the SDG model of the RCS was built .Based on the SDG model ,a fault diagnosis system of RCS was developed ,and the steam gen-erator tube rupture (SGTR) and rod ejection accidents were taken as example to analyze the process of diagnosis inference .The simulation results show that the method based on SDG can effectively diagnose the fault in RCS ,and it can also provide good explana-tion for the fault propagation paths .T herefore ,this method can help operators to make correct decisions .
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2014年第9期1646-1653,共8页 Atomic Energy Science and Technology
基金 黑龙江省博士后科研启动金资助项目(LBH-Q1(12119))
关键词 核动力装置 SGTR 弹棒事故 故障诊断 符号有向图 nuclear power plant SGTR rod ejection accident fault diagnosis SDG
  • 相关文献

参考文献9

  • 1MAURYA M R, RENGASWAMY R, VEN- KATASUBRAMANIAN V. Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheets[J]. Engineering Applications Artificial Intelligence, 2004, 17(5) : 501-518.
  • 2高东,吴重光,张贝克,马昕.Signed Directed Graph and Qualitative Trend Analysis Based Fault Diagnosis in Chemical Industry[J].Chinese Journal of Chemical Engineering,2010,18(2):265-276. 被引量:16
  • 3黄卫东,王克昌,黄卫东.基于定性和定量关系的液体火箭发动机故障诊断[J].航空动力学报,1996,11(3):281-284. 被引量:16
  • 4李秀喜,吉世明.基于半定量SDG模型的化工过程故障诊断[J].清华大学学报(自然科学版),2012,52(8):1112-1115. 被引量:14
  • 5YANG Fan, SHAH S L, XIAO Deyun. Signed directed graph modeling of industrial processes and their validation by data-based methods[C]// 2010 conference on Control and Fault Tolerant Systems. Nice, France: [s. n. ], 2010.
  • 6聂银燕,林晓焕.基于SDG的压缩机故障诊断方法研究[J].微电子学与计算机,2013,30(3):140-142. 被引量:7
  • 7ZHANG Zhaoqian, WU Chongguang, ZHANG Beike, et al. SDG multiple fault diagnosis by re- al-time inverse inference [J]. Reliability Engi- neering and System Safety, 2005, 87: 173-189.
  • 8MA Yongguang, GAO Jianqiang, MA Liangyu, et al. Study on fault diagnosis based on the quali- tative/quantitative model of SDG and genetic algorithm[C]//Proceedings of the Fifth Interna- tional Conference on Machine Learning and Cybernetics.[S. l. ]: [s. n. ], 2006.
  • 9郑福裕,邵向业,丁云峰.核电厂运行概论[M].北京:原子能出版社,2010.

二级参考文献16

  • 1杨帆,萧德云.基于SDG的复杂系统故障传播规律分析[J].高技术通讯,2005,15(10):33-36. 被引量:9
  • 2刘敏华,萧德云.基于SDG模型和模糊融合的故障诊断方法[J].控制工程,2006,13(1):10-14. 被引量:10
  • 3杨帆,萧德云.概率SDG模型及故障分析推理方法[J].控制与决策,2006,21(5):487-491. 被引量:15
  • 4黄卫东,1995年
  • 5Yu Chengching,AIChE Journal,1991年,37卷,4期
  • 6刘景良.化工安全技术[M].北京:化学工业出版社,2002:1-30.
  • 7Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review o{ process {ault detection and diagnosis Part II: Quantitative model and search strategies [J]. C*Jmputers 6.. Chemical Engineering, 2003, 27(3): 313-326.
  • 8Shiozaki J, Shihata B, Matsuyama H, et al. Fault diagnosis of chemical processes utilizing signed directed graphs improvement by using temporal in{ormation [J]. IEEE Transactions on Industrial Electronics, 1989, 36(4) : 469 - 474.
  • 9Yu C C, Lee C. Fault diagnosis based on qualitative/ quantitative process knowledge [J]. AIChE Journal, 1991, 37(4).- 617 - 628.
  • 10Wang X Z, Ya::g S A, Yang S H, et al. The application of fuzzy qualitative simulation in safety and operability assessment of process plants [J]. G:mputers and Chemical Engineering, 1996, 20:671-676.

共引文献47

同被引文献19

  • 1IRI M, AOKI K, O'SHIMA E, el al. An algo- rithm for diagnosis of system failures in the chemical process[J]. Computers and Chemical Engineering, 1979, 3: 489-493.
  • 2SHIOZAKI J, MATSUYAMA H, TANOO K, et al. Fault diagnosis of chemical processes hy the use of signed directed graphs[J]. Internation- al Chemical Engineering, 1985, 25(4): 651 -659.
  • 3VEDAM H, VENKATASUBRAMANIAN V. Signed digraph based multiple fault diagnosis[J]. Computers Chem, 1997, 21(97): 655-660.
  • 4VEDAM H, VENKATASUBRAMANIAN V. PCA-SDG based process monitoring and fault di agnosis[J]. Control Engineering Practice, 1999, 7:903 -917.
  • 5DANESHVAR M, FARHANGI B. Data driven approach for fault detection and diagnosis of boil- er system in coal fired power plant using principal component analysis[J]. International Review o[ Automatic Control. 2010, 3(2): 198-208.
  • 6FRANK P M. Analytical and qualitative model- based fault diagnosis: A survey and some new results[J]. European Journal of Control, 1996, 2 (1): 6-28.
  • 7TARIFA E E, SCENNA N J. A methodology for fault diagnosis in large chemical process and an application to a multistage flash desalination process: Part I [J]. Reliability Engineering and System and Safety, 1998, 60(1): 29-40.
  • 8PENG Di, GENG Zhiqiang, ZHU Qunxiong. A multilogic probbilistic signed directed graph fault diagonsis approach based on bayesian inference [J]. Industrial & Engineering Chemistry Re- search, 2014, 53:9 797- 9 804.
  • 9MAN() R M. RENGASWAMY R, VENKATA SUBRAMANIAN V. A signed directed graph based systematic framework for steady-state mal function diagnosis inside control loops[J]. Chem ical Engineering Science, 2006, 61:1 790-1 810.
  • 10ZHAO Ke. An integrated approach to performance monitoringand fault diagnosis of nuclear power systems [D]. Knoxiville:The University of Tennessee, 2005: 18-34.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部