期刊文献+

非劣解变异蛙跳算法

Non-inferior Solution Variants Frog Leaping Algorithm
下载PDF
导出
摘要 针对基本蛙跳算法搜索速度和精度不高的缺点,将变异的思路融入基本蛙跳算法,提出了一种非劣解变异蛙跳算法.算法充分利用蛙群的群体信息,对青蛙子族群中的若干非劣解结合自身信息和群体信息进行变异,避免了算法陷入局部最优,并大幅度提高了算法的搜索速度.实验表明,改进后的算法收敛速度以及收敛精度方面都比基本蛙跳算法有了很大程度的提高,同时,该算法与相关文献中的算法进行比较发现,其性能有较大的提高. As the search speed and accuracy of the basic frog leaping algorithm is not high,this article integrates the idea of variation into the basic frog leaping algorithm(SFLA)and proposes a new improved shuffled frog leaping algorithm which is called Non-inferior solution variants frog leaping algorithm(NSFLA).The algorithm makes full use of the information of frog population groups to complete the variant of some non-inferior solutions by combining their own information and the group information.This method can avoid falling into local optimum.At the same time,it can also greatly increase the searching speed of the algorithm.The experimental results reveal that NSFLA is better than SFLA in convergence velocity and convergence precision.Comparing NSFLA with the algorithms in some documents,we find the performance of NSFLA better.
作者 李辉
出处 《成都大学学报(自然科学版)》 2014年第3期247-250,共4页 Journal of Chengdu University(Natural Science Edition)
基金 福建省教育厅自然科学基金(JB13312)资助项目
关键词 蛙跳算法 非劣解 收敛速度 收敛精度 SFLA non-inferior solution convergence velocity convergence precision
  • 相关文献

参考文献9

二级参考文献50

  • 1肖源杰,倪富健,都敬丽.基于HDM-4的路面养护决策仿真-优化框架研究[J].交通与计算机,2007,25(3):82-86. 被引量:2
  • 2ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics, 2005,19(1 ):43-53.
  • 3EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management, 2003,129 ( 3 ) : 210-225.
  • 4LIONG S Y, ATIQUZZAMAN M. Optimal design of water distribution network using shuffled complex evolution [ J ]. The Institution of Engineers, 2004,44( 1 ) :93-107.
  • 5EUSUFF M M. Water resources decision making using meta-heuristic optimization methods[ D ]. Tucson: University of Arizona, 2004.
  • 6ELBEHAIRY H, ELBELTAGI E, HEGAZY T, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [J ]. Computer-Aided Civil and Infrastructure Engineering, 2006,21 (8) :561-572.
  • 7WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67-82.
  • 8BIRBIL S I, FANG S C. An electromagnetism-like mechanism for global optimization[ J]. Journal of Global Optimization, 2003,25 (3) :263-282.
  • 9EUSUFF M M,LANSEY K E.Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Water Resources Planning and Management,2003,129 (3):210-225.
  • 10ELBEHAIRY H,ELBELTAGI E.Comparison of two evolutionary algorithms for optimization of bridge deck repairs[J].Computer-Aided Civil and Infrastructure Engineering,2006,21 (8):561-572.

共引文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部