期刊文献+

水分再分配对土壤-植物系统养分循环的生态意义 被引量:8

Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system
原文传递
导出
摘要 水分再分配(hydraulic redistribution,HR)作为一个普遍存在的生物物理过程,在缓解植物干旱胁迫、调节植物种间关系和群落组成、影响生态系统水碳平衡等方面具有重要的生态意义。近年来,同位素标记示踪技术的应用促进了HR的深入研究,该文综述了HR对土壤-植被系统养分循环的影响。HR能改善干燥土层的水分状况,防止根系栓塞,促进细根存活与生长,提高微生物活性,从而促进植物对表层土壤养分(尤其是氮)的吸收;HR还通过水分下传作用促进植物对深层土壤中磷和金属离子的吸收。HR促进土壤养分库的上下交换与流动,调节植物与土壤的氮磷比,因此其影响可能具有全球意义。在全球变化(如氮沉降)背景下,有必要深入探索HR在生物地球化学循环过程中的影响和作用,并将其纳入生态系统模型中。 Hydraulic redistribution (HR), one of the common bio-physical processes, plays key roles in mediating plant drought stress, regulating plant interspecific relations and community composition, as well as in influencing water and carbon balance of ecosystems. Great improvements have been achieved in HR research with fast development of isotopic labelling and tracing technologies. This paper summarizes the effects of HR on nutrient cycling of soil-plant system, based on studies over the past decade. HR increases soil water content in dry soil layers, thus helping to prevent embolism in roots, increasing the survival rate and the growth rate of fine roots and improving microbial activities. Such effects improve plant nutrient uptake, i.e., hydraulic lift promotes nitrogen uptake from upper soil layers and hydraulic descent promotes phosphorus uptake from deep soil layers. HR may facilitate nutrient exchange between upper and lower soil nutrient pools, improve nutrient flows and regulate the N:P ratio in both plants and soil. These effects may ultimately affect global ecosystems. Under the global change scenarios (e.g. nitrogen deposition), it is necessary to further explore the effects of HR on biogeochemical cycles. HR should be taken into account when using ecosystem models for future predictions.
出处 《植物生态学报》 CAS CSCD 北大核心 2014年第9期1019-1028,共10页 Chinese Journal of Plant Ecology
基金 中国科学院战略先导科技专项(XDA-05070102) 中国科学院仪器设备功能开发技术创新项目
关键词 生物地球化学循环 水分提升 氮磷比 养分吸收 根系性状 biogeochemical cycle, hydraulic lift, N:P ratio, nutrient uptake, root traits
  • 相关文献

参考文献75

  • 1Aanderud ZT, Richards JH (2009). Hydraulic redistribution may stimulate decomposition. Biogeochemistry, 95, 323-333.
  • 2Allen MF (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6, 291-297.
  • 3Armas C, Kim JH, Bleby TM, Jackson RB (2012). The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species. Oecologia, 168, 11-22.
  • 4Armas C, Padilla FM, Pugnaire FI, Jackson RB (2010). Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions. Oecologia, 162, 11-21.
  • 5Bauerle T, Richards J, Smart D, Eissenstat D (2008). Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant, Cell & Environment, 31, 177-186.
  • 6Bayala J, Heng LK, van Noordwijk M, Ouedraogo SJ (2008). Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna. Acta Oecologica, 34, 370-378.
  • 7Bleby TM, McElrone AJ, Jackson RB (2010). Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant, Cell & Environment, 33, 2132-2148.
  • 8Boyer JS (1982). Plant productivity and environment. Science, 218,443-448.
  • 9Brooks JR, Meinzer FC, Warren JM, Domec JC, Coulombe R (2006). Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant, Cell & Environment, 29, 138-150.
  • 10Brooksbank K, White D, Veneklaas E, Carter J (2011).Hydraulic redistribution in Eucalyptus kochii subsp. borealis with variable access to fresh groundwater. Trees, 25, 735-744.

二级参考文献97

  • 1樊小林,石卫国,曹新华,郭立彬,沈磊,李玲.根系提水作用的土壤水分变异及养分有效性Ⅰ.谷子根系提水作用及根系吸收对土壤水分变异的影响[J].水土保持学报,1995,9(4):36-42. 被引量:29
  • 2许旭旦,诸涵素.植物根部的水分倒流现象[J].植物生理学通讯,1995,31(4):241-245. 被引量:17
  • 3曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019. 被引量:527
  • 4高三平,李俊祥,徐明策,陈熙,戴洁.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报,2007,27(3):947-952. 被引量:132
  • 5Andraski BJ (1997). Soil-water movement under natural-site and waste-site conditions: a multiple-year field study in the Mojave Desert, Nevada. Water Resources Research, 33, 1901 - 1916.
  • 6Asner GP, Nepstad DC, Cardinot stress and carbon uptake in an G, Ray D (2004). Drought Amazon forest measured with spacebome imaging spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 101, 6039 - 6044.
  • 7Belsky AJ (1994). Influences of trees on savanna productivity: test of shade, nutrients, and tree-grass competition. Ecology, 75, 922 - 932.
  • 8Belsky A J, Amundson RG, Duxbury JM, Riha SJ, All AR, Mwonga SM (1989). The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology, 26, 1005- 1024.
  • 9Bleby TM, Burgess SSO, Adams MA (2004). A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Functional Plant Biology, 31, 645 - 658.
  • 10Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002). Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiology, 22, 1107- 1117.

共引文献106

同被引文献134

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部