期刊文献+

考虑非完美维修的实时剩余寿命预测及维修决策模型 被引量:22

Prediction of real-time remaining useful life and maintenance decision model considering imperfect preventive maintenance
下载PDF
导出
摘要 准确的剩余寿命预测是对设备进行预防性维护维修决策的关键。利用随机滤波理论,基于当前时刻及之前的历史状态监测信息,由已知的设备初始寿命分布函数建立非完美维修策略下的实时剩余寿命分布函数预测模型。同时考虑非完美维修效果与时间相关性,提出一种以平均剩余寿命为阈值的非完美预防性维护及更换的维修策略,建立了以系统的预防性维护及预防性更换阈值为优化变量和最小化平均维护维修费用为目标函数的优化模型。采用微粒群算法进行优化求解,得到系统最佳的预防性维护及预防性更换阈值,并使系统长期运行平均费用率最低。以初始寿命符合威布尔分布的疲劳裂纹为例,验证了该实时剩余寿命分布预测方法及非完美维护维修策略的可行性。 The accurate prediction of the Remaining Useful intanance decision. Based on present moment and history Life (RUL) is the key for the equipment's preventive ma- monitoring information, a real-time remaining useful life prediction model was established by using stochastic filtering theory under the imperfect preventive maintenance strategies. A maintenance strategy of imperfect preventive maintenance and replacement strategy by taking average remaining useful life as threshold was proposed, and an optimization model was established to choose the threshold of preventive maintenance as optimal variable and the minimum average maintenance cost as object function. Particle Swarm Optimization (PSO) algorithm was used to solve the model, which could obtain the best preventive mainte- nance and preventive replacement threshold, and make the long-run average cost rate lowest. The fatigue cracking which accorded with Weibull distribution was taken as the examole to verify the feasibility of proposed methods.
作者 石慧 曾建潮
出处 《计算机集成制造系统》 EI CSCD 北大核心 2014年第9期2259-2266,共8页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(41272374) 山西省科技攻关资助项目(20130321006-01)~~
关键词 实时 剩余寿命 预测 长期平均费用率 非完美 预防性维护维修 real-time remaining useful life prediction long-run average cost rate imperfect preventive mainte-nance
  • 相关文献

参考文献21

  • 1SIX S,WANG W,HU C H,et al.Remaining useful life estimation—a review on the statistical data driven approaches[J].European Journal of Operational Research,2011,213 (1):1-14.
  • 2ZHAO F,TIAN Z,ZENG Y.Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method[J].IEEE Transactions on Reliability,2013,62(1):146-159.
  • 3BIAGETTI T,SCIUBBA E.Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems[J].Energy,2004,29(12):2553-2572.
  • 4MA J,CHEN S,XU Y.Fuzzy logic from the viewpoint of machine intelligence[J].Fuzzy Sets and Systems,2006,157(5):628-634.
  • 5KUMAR D,WESTBERG U.Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting[J].European Journal of Operational Research,1997,99(3):507-515.
  • 6ZHOU Z J,HU C H,XU D L,et al.A model for real-time failure prognosis based on hidden Markov model and belief rule base[J].European Journal of Operational Research,2010,207(1):269-283.
  • 7WANG W Q,GOLNARAGHI M F,ISMAIL F.Prognosis of machine health condition using neuro-fuzzy systems[J].Mechanical Systems and Signal Processing,2004,18 (4):813-831.
  • 8CARR M J,WANG W.A case comparison of a proportional hazards model and a stochastic filter for condition-based maintenance applications using oil-based condition monitoring information[J].Journal of Risk and Reliability,2008,222 (1):47-55.
  • 9CHEN C,VACHTSEVANOS G,ORCHARD M E.Machine remaining useful life prediction:An integrated adaptive neurofuzzy and high-order particle filtering approach[J].Mechanical Systems and Signal Processing,2012,28:597-607.
  • 10MYOTYRI E,PULKKINEN U,SIMOLA K.Application of stochastic filtering for lifetime prediction[J].Reliability Engineering & System Safety,2006,91 (2):200-208.

二级参考文献26

  • 1Makis V, Wu J, Gao Y. An application of DPCA to oil data for CBM modeling [J].European Journal of Operational Research,2006,174:112-123.
  • 2Vlok P J, Coetzee J L, Banjevie D, et al. Optimal component replacement decisions using vibration monitoring and the proportional-hazards models [ J ]. Journal of the Operational Research Society, 2002, 53 ( 2 ) : 193-202.
  • 3Dong M, He D. Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis [ J ]. European Journal of Operational Research ,2007,178:858-878.
  • 4Wang W, Zhang W. An asset residual life prediction model based on expert judgments [ J ]. European Journal of Operational Research ,2008,188:496-505.
  • 5Wang W, Christer A H. Towards a general condition - based maintenance model for a stochastic dynamic system [ J ]. Journal of the Operational Research Society ,2000, 51 (2) :14-5-155.
  • 6Wang W. A two-stage prognosis model in condition based maintenance [J ]. European Journal of Operational Research ,2007,182 : 1177-1187.
  • 7Wang W. A model to predict the residual life of rolling element bearings given monitoring condition information to date [ J ]. IMA Journal of Management Mathematics, 2002,13:3-16.
  • 8Bogdanoff J L, Kozin F. Probabilistic models of cumulative damage [ M ]. New York : Wiley ; 1985.
  • 9BUNKS C, MCCARTHY D, TARIK A. Condition based maintenance of machines using hidden Markov models[J]. Mechanical Systems and Signal Processing, 2000,14(4) :597-612.
  • 10CAMCI F. Process monitoring, diagnostics and prognostics using support vector machines and hidden Markov models[D]. Detroit, Mich. , USA: Wayne State University,2005.

共引文献27

同被引文献172

引证文献22

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部