期刊文献+

复杂动态环境下基于改进的CautiousBug算法的机器人路径规划 被引量:2

Path Planning of Robots Based on the Improved CautiousBug Algorithm in Complex and Dynamic Environment
原文传递
导出
摘要 通过对CautiousBug算法进行改进,提出了一种复杂动态环境下移动机器人局部路径规划方法.首先,针对移动机器人局部路径规划中局部极值点问题,CautiousBug算法中机器人在沿障碍物边缘绕行时,基于螺线绕行规则不断地调整绕行方向以逃离局部极值点,但调整模式单一,缺乏灵活性,为了使机器人更易快速的逃离局部极值点,本文将目标点作为参考信息,在螺线绕行规则中添加了绕行方向调整条件.其次,为了使机器人能安全避开随机移动的障碍物,在CautiousBug算法中添加了动态障碍物避碰规则,该避碰规则考虑了路径的局部优化,最终可以使机器人绕过随机移动的障碍物并规划出一条较优的安全路径.仿真结果验证了改进算法在复杂动态环境下的实时性和有效性. For a single mobile robot in a complex and dynamic environment, a local path planning method is presen- ted based on the improved CautiousBug algorithm. The original CautiousBug algorithm uses the spiral searching strategy to address the problem of local minimum point, where the motion direction of the robot along an obsta- cle boundary is frequently adjusted to flee the local minimum point; however, the pattern of adjustment is very simple and lacks flexibility. In the improved one, to make the robot flee the local minimum point more quickly and easily, we add a condition for adjusting the following direction to the spiral searching strategy, where the target point is regarded as a reference point. Secondly, a rule to safely avoid the obstacles with random motion is also constructed in the improved one, where local optimization of the path is considered. The rule can make the robot bypass dynamic obstacles and find a better and safety path. Simulation results demonstrate the effec- tiveness and real time property of the improved method in complex and dynamic environments.
出处 《信息与控制》 CSCD 北大核心 2014年第4期398-404,共7页 Information and Control
基金 国家自然科学基金资助项目(60874017) 辽宁省教育厅科技研究项目(L2013121)
关键词 复杂动态环境 局部极值点 螺线绕行规则 避碰规则 动态障碍物 complex and dynamic envi-ronment local minimum point spiral searching strategydynamic obstacle collision avoidance
  • 相关文献

参考文献18

二级参考文献66

  • 1王凌,李彬彬,郑大钟,金以慧.模型降阶和参数估计的一种快速遗传算法[J].控制与决策,2005,20(4):426-429. 被引量:4
  • 2周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划[J].电子学报,2006,34(5):911-914. 被引量:27
  • 3申晓宁,郭毓,陈庆伟,胡维礼.多目标遗传算法在机器人路径规划中的应用[J].南京理工大学学报,2006,30(6):659-663. 被引量:19
  • 4孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,..
  • 5Kim D H, Shin S. Local path planning using a new artificial potential function composition and its analytical design guidelines[J]. Advanced Robotics, 2006, 20(1): 115-135.
  • 6Choset H. Simultaneous mapping, path planning, and localization using topological and range sensor information [C]. Proc of the 31st Int Symposium on Robotics. Ottawa: Canadian Federation for Robotics, 2000 : 299-305.
  • 7Zoumponos G T, Aspragathos N A. Fuzzy logic path planning for the robotic placement of fabrics on a work table [J]. Robotics and Computer Integrated Manufacturing, 2008, 24(2): 174-186.
  • 8Pehlivanoglu Y V, Bavsal O, Hacioglu A. Path planning for autonomous UAV via vibrational genetic algorithm [J].Aircraft Engineering and Aerospace Technology, 2007, 79(4): 352-359.
  • 9Li F, Lindquist T M. Knowledge guided genetic algorithm for optimal contracting strategy in a typical standing reserve market[C]. Proc of the IEEE Power Engineering Society General Meeting. Piscataway: Institute of Electrical and Electronics Engineers Inc Press, 2003: 859-863.
  • 10Rowe N C, Ross R S. Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects [J]. IEEE Trans on Robotics and Automation, 1990, 6(5): 540-553.

共引文献222

同被引文献15

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部