期刊文献+

基于概率假设密度平滑器的低检测概率下多目标跟踪 被引量:6

Multi-target Tracking under Low Detection Probability Based on Probability Hypothesis Density Smoother
原文传递
导出
摘要 针对传感器低检测概率下多目标跟踪的问题,提出了一种概率假设密度(PHD)滤波平滑器,并给出了该平滑器的高斯混合(GM)形式.综合运用前向PHD滤波递推与后向平滑两个步骤,改善了多目标跟踪系统对目标误跟踪的情况.通过仿真结果说明,经过平滑的PHD滤波与未经平滑的PHD滤波相比,在目标数目与状态的估计精度上得到了明显的提高. To solve the problem of multi-target tracking under the condition of low detection probability of sensors, we propose a probability hypothesis density (PHD) smoother, and give the Ganssian mixture (GM) form of the smoother. The algorithm takes use of PHD forward recursion and backward smoothing, which lessens the possi- bility of wrong tracking of the target under the condition of low detection probability of sensors. In addition, the simulation results demonstrate that , when comparing the smoothed PHD filtering with the unsmoothed PHD fil- tering, the estimation accuracy of the number and condition of targets is significantly improved.
出处 《信息与控制》 CSCD 北大核心 2014年第4期435-439,共5页 Information and Control
基金 辽宁省教育厅资助项目(LT2012005)
关键词 概率假设密度 平滑算法 低检测概率 多目标跟踪 probability hypothesis densi-ty smoothing algorithm low detection probability multi-target tracking
  • 相关文献

参考文献21

  • 1Deming R, Schindler J, Perlovsky L. Multi-target/multi-sensor tracking using only range and Doppler measurements[ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 (2) : 593 - 611.
  • 2Munz M, Mahlisch M, Dietmayer K. Generic centralized multi sensor data fusion based on probabilistic sensor and environment models for driv- er assistance systems[J]. IEEE Intelligent Transportation Systems Magazine, 2010, 2 ( 1 ) : 6 - 17. .
  • 3Sankaranarayanan A C, Veeraraghavan A, Chellappa R. Object detection, tracking and recognition for multiple smart cameras[J]. Proceed- ings of the IEEE, 2008, 96(10) : 1606 - 1624.
  • 4Anderson K D. Radar detection of low-altitude targets in a maritime environment [ J]. IEEE Transactions on Antennas and Propagation, 1995, 43(6) : 609 -613.
  • 5Brekke E, Hallingstad O, Glattetre J. Tracking small targets in heavy-tailed clutter using amplitude information [ J]. 1EEE Journal of Oceanic Engineering, 2010, 35(2): 314-529.
  • 6. Moyer L R, Spak J, Lamanna P. A multi-dimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 (4) : 3062 - 3068.
  • 7金术玲,梁彦,潘泉,程咏梅.一种天波超视距雷达分级Hough变换航迹起始方法[J].电子与信息学报,2008,30(8):1968-1972. 被引量:5
  • 8Puranik S, Tugnait J K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering[ J]. IEEE Transactions on Aero- space and Electronic Systems, 2007, 43 ( 1 ) : 23 - 35.
  • 9Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19 (1) : 5 -18.
  • 10Pulford G W. OTHR multipath tracking with uncertain coordinate registration [J] IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1) : 38 -56.

二级参考文献76

共引文献31

同被引文献32

  • 1马璐,王刚.多目标跟踪中基于特征辅助的概率数据关联算法[J].现代电子技术,2012,35(4):18-21. 被引量:3
  • 2Oussalah M, de Schutter J.Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter[J].Information Sciences, 2002, 142(1-4): 195-226.
  • 3Li L Q, Ji H B, Gao X B.Maximum entropy fuzzy clustering with application to real-time target tracking[J].Signal Processing, 2006, 86(11): 3432-3447.
  • 4Zhou X Z, Xie L, Huang Q, et al.Tennis ball tracking using a two-layered data association approach[J].IEEE Transactions on Multimedia, 2015, 17(2): 145-156.
  • 5Kameda H, Tsujimichi S, Kosuge Y.Target tracking under dense environments using range rate measurements[C]//37th SICE Annual Conference.Piscataway, USA: IEEE, 1998: 927-932.
  • 6Lerro D, Bar-Shalom Y.Automated tracking with target amplitude information[C]//American Control Conference.Piscataway, USA: IEEE, 1990: 2875-2880.
  • 7Lerro D, Bar-Shalom Y.Interacting multiple model tracking with target amplitude feature[J].IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 494-509.
  • 8Kirubarajan T, Bar-Shalom Y.Low observable target motion analysis using amplitude information[J].IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1367-1384.
  • 9Musicki D, Evans R, Stankovic S.Integrated probabilistic data association[J].IEEE Transactions on Automatic Control, 1994, 39(6): 1237-1240.
  • 10Musicki D, Suvorova S.Tracking in clutter using IMM-IPDA-based algorithms[J].IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 111-126.

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部