期刊文献+

多胞型变参数系统的网络化状态反馈镇定

Stabilization of Polytopic Parameter-Varying Systems via Networked State Feedback
原文传递
导出
摘要 针对一类参数变化速率有界的多胞型变参数系统,研究其网络化状态反馈镇定问题.首先给出有界参数变化速率的多胞描述方法;在此基础上考虑网络传输所导致的系统状态时延,基于参数依赖Lyapunov-Krasovskii泛函方法和松弛矩阵处理技巧,得到网络化鲁棒控制器设计准则;进一步考虑网络时延所诱发的控制器与对象参数异步现象,给出网络化变增益控制器求解条件,降低了设计准则的保守性;最后通过数值仿真验证了所提方法的有效性. We study the problem of networked state feedback stabilization for a class of polytopic parameter-varying systems with the bounded rates of parameter variations, and then introduce a polytope modeling method so that the parameter variation rates take values from a vector polytope. Considering the state transmission delay, we obtain the design criterion of the networked robust controller based on the parameter-dependent Lyapunov-Kra- sovskii functional method and the slack matrix technique. Furthermore, with the phenomenon of parameter asynehrony between the plant and the controller, we give the synthesis condition of the networked gain-scheduled controller, which qualifies relatively lower conservativeness. Numerical simulations illustrate the effectiveness of the proposed method.
出处 《信息与控制》 CSCD 北大核心 2014年第4期440-446,共7页 Information and Control
基金 国家自然科学基金资助项目(61074027 61273083)
关键词 多胞型系统 网络控制系统 变增益控制 鲁棒控制 参数依赖LYAPUNOV函数 polytopic system networked control systemgain-scheduled control robust control parameter-dependent Lyapunov function
  • 引文网络
  • 相关文献

参考文献18

  • 1Huang Y, Sun C, Qian C, et al. Slow-fast loop gain-scheduled switching attitude tracking control for a near-space hypersonic vehicle [ J ]. Pro- ceedings of IMechE, Part I: Journal of Systems and Control Engineering, 2012, 227 (1) : 96 -109.
  • 2Xiyuan Huang,Qing Wang,Yali Wang,Yanze Hou,Chaoyang Dong.Adaptive augmentation of gain-scheduled controller for aerospace vehicles[J].Journal of Systems Engineering and Electronics,2013,24(2):272-280. 被引量:8
  • 3Hashemi S M, Abbas H S, Werner H. Low-complexity linear parameter-varying modeling and control of a robotic manipulator[ Jl. Control En- gineering Practice, 2012, 20 (3) : 248 - 257.
  • 4Daafouz J, Bernussou J. Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties[ J]. Sys- tems and Control Letters, 2001, 43(5) : 355 -359.
  • 5de Oliveira M C, Bernussou J, Geromel J C. A new discrete-time robust stability condition[ J]. Systems and Control Letters, 1999, 37 (4) : 261 - 265.
  • 6Geromel J C, Colaneri P. Robust stability of time varying polytopic systems[ J]. Systems and Control Letters, 2006, 55 (1) : 81 -85.
  • 7Chesi G, Garulli A, Tesi A, et al. Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions [J]. Automatica, 2007, 43(2): 309-316.
  • 8Zhong Zhen Duan Guangren.Analysis of finite-time practical stability for time-varying polytopic systems[J].Journal of Systems Engineering and Electronics,2009,20(1):112-119. 被引量:1
  • 9Montagner V F, Oliveira R C L F, Peres P L D, et al. Linear matrix inequality characterisation for H + and H2 guaranteed cost gain-scheduling quadratic stabilisation of linear time-varying polytopic systems [ J]. IET Control Theory and Applications, 2007, 1 (6) : 1726 -1735.
  • 10Daafouz J, Bernussou J, Geromel J C. On inexact LPV control design of continuous-time polytopic systems[ J]. IEEE Transactions on Automat- ic Control, 2008, 53 (7) : 1674 - 1678.

二级参考文献34

  • 1Dorato P. Short time stability in linear time-varying systems. Proc. IRE International Convention Record Part 4, 1961: 83-87.
  • 2Weiss L, Infante E F. Finite-time stability under perturbing forces and on product spaces. IEEE Trans. on Auto. Contr., 1967, 12: 54-59.
  • 3Amato F, Carbone M, Ariola M, et al. Finite-time stability of discrete-time systems. Proceedings of the American Control Conference, Boston, Massachusetts, 2004: 1440- 1444.
  • 4Amato F, Ariola M. Finite-time control of discrete-time linear systems. IEEE Trans. on Auto. Control, 2005, 50(5): 724-729.
  • 5Amato F, Ariola M, Abdallah C T, et al. Finite-time control for uncertain linear systems with Disturbance inputs. Proceedings of the American Control Conference, San Diego, California, 1999: 1776-1780.
  • 6Amato F, Ariola M, Dorato P. Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, 2001, 37:1459 1463.
  • 7Mastellone S, Abdallah C T, Dorato P. Stability and finitetime stability analysis of discrete-time nonlinear networked control systems. ACC, Porland, OR, USA, 2005: 1239- 1244.
  • 8Amato F, Ariola M, Cosentino C, et al. Control of linear discrete-time systems over a finite-time interval. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004: 1284-1288.
  • 9Amato F, Ariola M, Cosentino C. Finite-time control of linear time-varying systems via output feedback. ACC, Porland, OR, USA, 2005: 4722-4726.
  • 10Amato F, Ariola M, Cosentino C. Finite-time control via output feedback: a general approach. 42rd IEEE Conference on Decision and Control, Maul, Hawaii USA, 2003: 350-355.

共引文献148

;
使用帮助 返回顶部