期刊文献+

一种非合作博弈下的无线网络接入选择方法 被引量:1

Wireless network access selection method with the non-cooperative game
下载PDF
导出
摘要 针对如何根据用户的需求在无线网络中选择接入网络的问题,依据不同接入网络之间的非合作关系以及接入网络与用户之间的非合作关系,建立了非合作博弈下的基于支付函数的模型.该模型根据多属性决策理论,运用灰色关联分析法对不同网络的性能参数进行归一化处理,将得到的灰色关联等级作为支付函数进行比较,选出较优秀的网络.通过求解用户与较优秀网络间的纳什均衡,得到用户的接入网络选择.实验结果表明,该方法能够根据用户的需求有效地选择合适的接入网络. The coexistence of various wireless access networks has been widely recognized in the next generation network.As a different network access form,how the clients at the instance of their needs will select the access network has become a widespread concern. For this problem, according to the noncooperation between different access networks and the noncooperation relationship between the access network and the clients,a non-cooperative game model based on the payoff function is established.On the basis of the multi-attribute decision theory, the model uses the gray correlation analysis method to normalize the performance parameters of the network, chooses the grey relation grade as the payoff function,compares and selects excellent networks which the clients can access.By solving the Nash equilibrium between the clients and excellent networks,the clients can access the appropriate network. Experimental results demonstrate that the method can effectively select the appropriate network according to the needs of the clients.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期98-104,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(U1135002 61372075 61202389 61100230 61309016) 中央高校基本科研业务费资助项目(K5051303004) 国家密码发展基金资助项目(MMJJ201201004) 地理信息国家重点实验室开放课题资助项目(SKLGIE2013-M-4-1)
关键词 非合作博弈 纳什均衡 灰色关联分析法 无线网络 选择方法 non-cooperative game Nash equilibrium gray correlation analysis method wireless network selection methods
  • 相关文献

参考文献16

  • 1Argento A, Cesana M, Gatti N, et al. A Game Theoretical Study of Access Point Association in Wireless Mesh Network [J]. Computer Communications, 2012, 35(5): 541-553.
  • 2Haria M, Milano P, Matto C, et al. Network Selection and Resource Allocation Games for Wireless Access Networks [J]. Mobile Computing, 2012, 12(12): 2427-2440.
  • 3Faisal Kaleem,Abolfazl Mehbodniya,Arif Islam,Kang K.Yen,Fumiyuki Adachi.Dynamic Target Wireless Network Selection Technique Using Fuzzy Linguistic Variables[J].China Communications,2013,10(1):1-16. 被引量:7
  • 4Kassar M, Kervella B, Pujolle G. An Overview of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks [J]. Computer Communications, 2008, 31(10): 2607-2620.
  • 5Yan Xiaohuan, Sekercioglu Y, Narayanan S. A Survey of Vertical Handover Decision Algorithms in Fourth Generation Heterogeneous Wireless Networks [J]. Computer Networks, 2010, 54(11) : 1848-1863.
  • 6Chamodrakas I, Martakos D. A Utility-based Fuzzy TOPSIS Method for Energy Efficient Network Selection in Heterogeneous Wireless Networks [J]. Applied Soft Computing, 2012, 12(7) : 1929-1938.
  • 7Gustafsson E, Jonsson A. Always Best Connected [J]. IEEE Wireless Communications, 2003, 10(1): 49-55.
  • 8Chang (2 J, Tsai T L, Chen Y H. Utility and Game-theory Based Network Selection Scheme in Heterogeneous Wireless Networks [C]//IEEE Wireless Communications and Networking Conference. New York: IEEE, 2009: 4918016.
  • 9Sengupta S, Anand S, Chatterjee M, et al. Dynamic Pricing for Service Provisioning and Network Selection in Heterogeneous Networks [J]. Physical Communication, 2009, 2(1-2): 138-150.
  • 10Salient O, Perez-Romero J, Agusti R, et al. Resource Auctioning Mechanisms in Heterogeneous Wireless Access Networks [C]//IEEE Vehicular Technology Conference. Piscataway: IEEE, 2006: 52-56.

二级参考文献50

  • 1Haykin S. Cognitive Radio: Brain-empowered Wireless Communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 2Stevenson C, Chouinard G, Lei Zhongding, et al. IEEE 802.22: the First Cognitive Radio Wireless Regional Area Network Standard[J]. IEEE Communications Magazine, 2009, 47(1): 130-138.
  • 3Ko Gwangzeen, Franklin A A, You S J, et al. Channel Management in IEEE 802.22 WRAN Systems [J]. IEEE Communications Magazine, 2010, 48(9): 88-94.
  • 4Stuber G L, Almalfouh S M, Sale D. Interference Analysis of TV-Band White Space [J]. Proceedings of the IEEE, 2009, 97(4): 741-754.
  • 5Wang B, Wu Y, Liu K J R. Game Theory for Cognitive Radio Networks: an Overview[J]. Computer Networks, 2010, 54(14) : 2537-2561.
  • 6Nie N, Comaniciu C. Adaptive Channel Allocation Spectrum Etiquette for Cognitive Radio Networks [J]. Mobile Networks and Applications, 2006, 11(6): 779-797.
  • 7La Q D, Chew Y H, Soong B H. An Interference Minimization Game Theoretic Subcarrier Allocation Algorithm for OFDMA-based Distributed Systems[C]//Proc of IEEE GLOBECOM. Hawaii: IEEE, 2009: 1-6.
  • 8Mustika I W, Yamamoto K, Murata H, et al. Spectrum Sharing with Interference Management for Distributed Cognitive Radio Networks: a Potential Game Approach[C]//Proc of IEEE VTC. Taiwan: IEEE, 2010: 1-5.
  • 9Ibars G C. Distributed Cooperation in Cognitive Radio Networks: Overlay Versus Underlay Paradigm [C]//Proc of IEEE VTC. Spain: IEEE, 2009: 1-6.
  • 10Xing Y, Mathur C, Haleem M, Dynamic Spectrum Access with QoS and Interference Temperature Constraints [J]. IEEE Trans on Mobile Eomputing, 2007, 6(4) : 423-433.

共引文献8

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部