摘要
利用重合度理论和一些分析技巧,得到一类二阶时滞Dumng微分方程的2kT周期解,通过对该微分方程的一系列周期解取极限获得同宿解的存在性.同时,β(t)是可变号的.
By using the continuation theorem of the coincidence degree theory and some analysis methods, the existence of a set with 2kT-periodic solutions for a class of duffing type differential equation with delay is studied, and then a homoclinic solution is obtained as a limit of a certain subsequence of the above set. Meanwhile, β(t) is allowed to change sign.
出处
《应用数学与计算数学学报》
2014年第3期308-316,共9页
Communication on Applied Mathematics and Computation
关键词
同宿解
周期解
重合度
homoclinic solution
periodic solution
coincidence degree