期刊文献+

不确定条件下n人非合作博弈均衡点集的通有稳定性 被引量:9

Generic stability of equilibrium for n-person non-cooperative games under uncertainty
下载PDF
导出
摘要 基于经典博弈模型的Nash均衡点集的通有稳定性和具有不确定参数的n人非合作博弈均衡点的概念,探讨了具有不确定参数博弈的均衡点集的通有稳定性.参照Nash均衡点集稳定性的统一模式,构造了不确定博弈的问题空间和解空间,并证明了问题空间是一个完备度量空间,解映射是上半连续的,且解集是紧集(即usco(upper semicontinuous and compact-valued)映射),得到不确定参数博弈模型的解集通有稳定性的相关结论. Based on the generic stability of equilibrium for classical game and a concept of equilibrium for the n-person non-cooperative games under uncertainty, the generic stability of equilibrium for games under uncertainty is studied. Thanks to the uniform framework of the model of stability of the Nash equilibrium, the solution space and the question space of games under uncertainty are constructed. The question space is proved to be a complete metric space, the solution mapping is upper semi-continuous, and the solution set is compact (i.e., the solution mapping meets the usco property). Some conclusions are got about the generic stability of the game model under uncertainty.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2014年第3期336-342,共7页 Communication on Applied Mathematics and Computation
基金 上海市自然科学基金资助项目(09ZR1411100) 上海市重点学科建设资助项目(S30104)
关键词 NASH均衡 完备度量空间 上半连续 通有稳定性 Nash equilibrium complete metric space upper semi-continuous generic stability
  • 相关文献

参考文献13

  • 1Nash J.Non-cooperative games[J].Annals of Mathematics,1951,54(5):286-295.
  • 2Selten R.Reexamination of the perfectness concept for equilibrium points in extensive games[J].International Journal of Game Theory,1975,4:25-55.
  • 3Wu W T,Jiang J H.Essential and equilibrium points of n-person noncooperative games[J].Scientia Sinica,1962,11:1307-1322.
  • 4西蒙.管理决策新科学[M].北京:中国社会科学出版社,1982.
  • 5Zhukovskii V I,Chikrii A A.Linear-Quadratic Differential Games[M].Kiew:Naoukova Doumka,1994.
  • 6Larbani M.About the existence of Nash-Slater equilibrium for a non-cooperative game under uncertainty[M]//Caballero R,Ruiz F,Steuer R.Advances in Multiple Objective and Goal Programming.Heidelberg:Springer-Verlag,1997:255-262.
  • 7Steuer R.Multiple Criteria Optimization:Theory,Computation and Application[M].New York:Wiley,1986.
  • 8杨哲,蒲勇健.广义不确定下广义多目标博弈弱Pareto-Nash均衡点集的存在性与本质连通区[J].系统科学与数学,2011,31(12):1613-1621. 被引量:10
  • 9张会娟,张强.不确定性下非合作博弈强Nash均衡的存在性[J].控制与决策,2010,25(8):1251-1254. 被引量:18
  • 10张会娟,张强.不确定性下非合作博弈简单Berge均衡的存在性[J].系统工程理论与实践,2010,30(9):1630-1635. 被引量:16

二级参考文献70

  • 1Nash J. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(5): 286-295.
  • 2Schelling T. The strategy of conflict[M]. Cambridge: Harvard University Press, 1960.
  • 3Aumann R J. Subjectivity and correlation in randomized strategies[J]. J of Mathematical Economics, 1974, 1(3): 67- 96.
  • 4Selten R. Reexamination of the perfenctness concept for equilibrium points in extensive games[J]. Int J of Game Theory, 1975, 4(1): 25-55.
  • 5Harsanyi J C. Games with incomplete information played by Bayesian players[J]. Management Science, 1967, 14:159-182, 320-334, 486-502.
  • 6Berge C. Theorie generale des jeux on-personnes[M]. Pads: Gauthier Villars, 1957.
  • 7Aumann J P. Acceptable points in general cooperative n-person games[M]. Prinston: Prinston University Press,1959.
  • 8Larbani M, Nessah R. Sur l'equilibre fort selon Berge 'Strong Berge equilibrium' [J]. RAIRO Operations Research, 2001, 35(2): 439-451.
  • 9Zhukovskii V I. Linear quadratic differential games[M]. Naoukova Doumka: Kiev, 1994.
  • 10Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty[J]. European J of Operational Research, 1999, 117(1): 145-156.

共引文献41

同被引文献54

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部