期刊文献+

基于局部结构相似与协同表示的超分辨率图像重建 被引量:2

Super-Resolution Image Reconstruction Based on Local Structural Similarity and Collaborative Representation
下载PDF
导出
摘要 提出一种基于局部几何结构相似性和协同表示的超分辨率图像重建算法.该算法利用l2范数正则化的协同表示和局部几何相似约束模型求解低分辨率图像块在低分辨率字典下的线性表示系数,并利用这一系数重构出高分辨率图像块.文中基于l2范数的系数求解模型可得到解析解而不涉及局部最小解,相较于l1稀疏性约束具有较低的复杂度.实验结果表明,该算法对小尺寸超分辨率图像重建可行且有效,并在重构效果上具有明显的优越性.进一步研究表明,在放大因子增大和存在噪声的情况下,该算法较传统算法重构效果也有显著提高. An approach for super-resolution image reconstruction is presented based on local structural similarity and collaborative representation. The collaborative representation l2-norm regularization and local similarity constraint are employed to seek a linear combination for a patch of low-resolution input image with respect to the low-resolution dictionary. Then,the high-resolution image patch is generated by virtue of the coefficients of this combination and the high-resolution dictionary. In addition,the l2-norm based objective function implies an analytical solution and it does not involve local minima. Hence,it performs at a lower complexity compared to l1-sparsity constraint model. The experimental results demonstrate that the proposed method is feasible and effective for small super-resolution image reconstruction and outperforms the bicubic interpolation method and sparse representation super-resolution model on both visual effect and numerical results. Further research shows that the proposed method also performs well for large magnification factors and noisy data.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期787-793,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.91330118 61273206 61101240)资助
关键词 局部结构相似性 协同表示 稀疏表示 超分辨率图像 图像重建 Local Structural Similarity Collaborative Representation Sparse Representation Super-Resolution Image Image Reconstruction
  • 相关文献

参考文献18

  • 1Biswas S, Aggarwal G, Flynn P J. Pose-Robust Recognition of Low- resolution Face Images//Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011 : 601-608.
  • 2Hou H S, Andrews H. Cubic Splines for Image Interpolation and Digital Filtering. IEEE Trans on Acoustics, Speech and Signal Pro- cessing, 1978, 26(6) : 508-517.
  • 3Ailebach J, Wong P W. Edge-Directed Interpolation// Proc of the International Conference on Image Processing. Lausanne, Switzer- land, 1996, III: 707-710.
  • 4Freeman W T, Jones T R, Pasztor E C. Example-Based Super-Res- olution. IEEE Computer Graphics and Applications, 2002, 22 (2) : 56 -65.
  • 5Chang H, Yeung D Y, Xiong Y M. Super-Resolution through Neighbor Embedding//Proc of the IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition. Washington, USA , 2004, I: 275-282.
  • 6Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Scienee, 2000, 290(5500): 2323-2326.
  • 7Yang J C, Wright J, Huang T S, et al. Image Super-Resolution via Sparse Representation. IEEE Trans on Image Processing, 2010, 19 ( 11 ) : 2861-2873.
  • 8Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 9Rigamonti R, Brown M A, Lepetit V. Are Sparse Representations Really Relevant for Image Classification?//Proe of the IEEE Con-ference on Computer Vision and Pattern Recognition. Providence, USA, 2011 : 1545-1552.
  • 10Shi Q F, Eriksson A, van den Hengel A, et al. Is Face Recogni- tion Really a Compressive Sensing Problem?/! Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Provi- dence, USA, 2011:553-560.

同被引文献15

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部