期刊文献+

基于互信息和分形维数相结合的选择性聚类融合算法研究 被引量:1

Research on Selective Clustering Ensemble Algorithm Based on Normalized Mutual Information and Fractal Dimension
下载PDF
导出
摘要 针对传统聚类融合算法不能消除劣质聚类成员的干扰,以及聚类准确性不高等问题,提出一种基于分形维数的选择性聚类融合算法.该算法实现增量式聚类,能够发现任意形状的聚类.通过基于互信息计算权值的选择策略,选取部分优质聚类成员,再利用加权共协矩阵实现融合,获得最终的聚类结果.实验证明,与传统聚类融合算法相比,该算法提高了聚类质量,具有较好的扩展性. Traditional clustering ensemble algorithm can not eliminate the influence of inferior quality clustering members and is also characterized with lower clustering accuracy. To solve the problems,a selective clustering ensemble algorithm based on fractal dimension is proposed. Firstly,the proposed algorithm is used to realize incremental clustering and can find arbitrary shape clustering. Then,according to the selection strategy of weight values based on normalized mutual information,the proposed algorithm selects high quality clustering members to realize integration by using weighted co-association matrix and get the final clustering results. The experimental results show that compared to the traditional clustering ensemble algorithm,the proposed algorithm improves the clustering quality and has good extensibility.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期847-855,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61100211)资助
关键词 选择性聚类融合 分形维数 互信息 选择策略 共协矩阵 Selective Clustering Ensemble Fractal Dimension Normalized Mutual Information Selection Strategy Co-association matrix
  • 相关文献

参考文献21

  • 1阳琳贇,王文渊.聚类融合方法综述[J].计算机应用研究,2005,22(12):8-10. 被引量:28
  • 2蒋盛益.基于投票机制的融合聚类算法[J].小型微型计算机系统,2007,28(2):306-309. 被引量:7
  • 3邹远强,李国徽,赵梓屹.基于遗传和蚁群算法融合的聚类新方法[J].科学技术与工程,2006,6(23):4700-4704. 被引量:9
  • 4Fern X L Z, Lin W. Cluster Ensemble Selection. Statistical Analysis and Data Mining, 2008, 1(3) : 128-141.
  • 5Azimi J, Fern X L. Adaptive Cluster Ensemble Selection//Proc of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009 : 992-997.
  • 6Hong Y, Kwong S, Wang H L, et al. Resampling-Based SelectiveClustering Ensembles. Patten Recognition Letters, 2009, 30 ( 3 ) : 298-305.
  • 7Hadjitodorov S T, Kuncheva L I, Todorova L P. Moderate Diversity for Better Cluster Ensembles. Information Fusion, 2006, 7 ( 3 ) : 264-275.
  • 8Zhou Z H, Tang W. Clusterer Ensemble. Knowledge Based Sys- tems, 2006, 19( 1 ) : 77-83.
  • 9Li T, Ding C. Weighted Consensus Clustering [ EB/OL]. [2013- 06-11 ]. http://users, cis. flu. edu/-taoli/tenure/dm08 72 li. pdf.
  • 10Zhang Z Y, Li T, Ding C, et al. Binary Matrix Factorization for Analyzing Gene Expression Data. Data Mining and Knowledge Dis- covery, 2010, 20( 1 ): 28-52.

二级参考文献107

共引文献142

同被引文献18

  • 1梁敏君,倪志伟,倪丽萍,杨葛钟啸.基于网格与分形维数的聚类算法[J].计算机应用,2009,29(3):830-832. 被引量:4
  • 2Jain A K.Data clustering: 50 years beyond k-means[J]. Pattern Recognition Letter, 2010,32 ( 8 ) : 651-666.
  • 3Babara D, Chen EUsing the fractal dimension to clus- ter datasets[C]//Proceedings of the 6th ACMSIGKDD Intemational Conference on Knowledge Discovery and Data Mining, 2000 : 260-264.
  • 4窦志彤,倪维健,高永梅,等.使用分形维数实现不同密度区域的聚类[J].计算机研究与发展,2004,41(增刊):213-219.
  • 5RajaramanA,UllmanJD.大数据互联网大规模数据挖掘与分布式处理[M].王斌,译.北京:人民邮电出版社,2012.
  • 6杨威,朱福喜.基于聚类融合的标题文本聚类方法[EB/OL].(2014-12-11).http://www.cnki.net/kcms/detail/11.2127.TP.20141211.1526.050.html.
  • 7Zhou Z H, Tang W.Cluster ensemble[J].Knowledge Based Systems, 2006,19( 1 ) : 77-83.
  • 8Fred A L, Jain A K.Data clustering using evidence accu- mulation[C]//Proceedings of the 16th International Con- ference on Pattern Recognition(ICPR) ,2002,4 : 276-280.
  • 9Yang Y ,Kamel M S, Jin F.ART-based clustering aggre-gation[C]//Proceedings of the IEEE International Con- ference on Granular Computing,2006:482-485.
  • 10Wang Xi, Yang Chunyu, Zhou Jie.Clustering aggregation by probability accumulation[J].Pattem Recognition, 2009, 42(5) :668-675.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部