期刊文献+

基于局部密度估计和近邻关系传播的谱聚类 被引量:6

Spectral Clustering Based on Local Density Estimation and Neighbor Propagation
下载PDF
导出
摘要 对密度分布不均匀的数据采用近邻传播的谱聚类,存在误将不同类的样本传入同一高相似度的子集中的情况,因而得不到真实的相似度矩阵和准确的聚类结果.针对这一问题,提出一种基于局部密度估计和近邻关系传播的谱聚类(LDENP-SC)算法.该算法首先对样本进行密度估计并升维,然后对新数据采用传播算法更新相似度矩阵并谱聚类.在计算密度时提出一种简易的局部密度计算方法,该方法既能反应样本的密度又能减少运算时间;在更新相似度矩阵时基于传播算法提出一种更新子集间样本相似性的方法,使更新后样本的相似度更接近实际.实验结果表明,LDENP-SC算法能够得出取得理想的相似度矩阵和准确的聚类结果,具有较好的泛化能力,且对一定范围内的参数σ表现出鲁棒性. Neighbor propagation based spectral clustering can be used to cluster the dataset with inhomogeneous density. However,sometimes it propagates different clustering samples into the same subset with high similarity,which can not obtain the real similarity matrix and accurate clustering results. To solve this problem,a local density estimation and neighbor propagation based spectral clustering algorithm(LDENPSC) is proposed. In this algorithm,the local density of the samples is firstly estimated and the dimensions of the datasets are increased. Then,the similarity matrix is updated by using neighbor propagation and the new dataset is clustered by spectral clustering. Also,a simple local density estimation method is proposed by with the local density of the samples can be estimated accurately and fast. Moreover,based on propagation algorithm,a method for updating the similarity of the samples in different subsets is adopted to get more actual similarity matrix. The experimental results show that LDENP-SC algorithm can obtain similarity matrix close to the ideal and accurate clustering results,has good generalization ability and is robust to a certain range of parameter σ.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期856-864,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60975027 61305017) 江苏高校优势学科建设工程项目资助
关键词 谱聚类 密度估计 近邻关系传播 相似度矩阵 Spectral Clustering Density Estimation Neighbor Propagation Similarity Matrix
  • 相关文献

参考文献4

二级参考文献46

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2KONG Wan-zeng,ZHU Shan-an.Multi-face detection based on downsampling and modified subtractive clustering for color images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):72-78. 被引量:10
  • 3田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 4王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 5Guy B Coleman,Harry C Andrews.Image segmentation by clustering[J].Proceedings of the IEEE,1979,67(5):773-785
  • 6C Stewart,Y C Lu,V Larson.A neural clustering approach for high resolution radar target classification[J].Pattern Recognition,1994,27(4):503-513
  • 7Massimiliano Pavan,Marcello Pelillo.A new graph-theoretic approach to clustering and segmentation[C].In:Proc of the 2003 of IEEE Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,2003.145-152
  • 8Jan Puzicha,Joachim M Buhmann,Thomas Hofmann.Histogram clustering for unsupervised image segmentation[C].In:Proc of the 1999 Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,1999.2602-2608
  • 9Matthias Heiler,Jens Keuche,Christoph Schorr.Semi-definite clustering for image segmentation with apriori knowledge[G].In:Proc of the 2005 27th Annual Meeting of the German Association for Pattern Recognition,LNCS 3663.New York:Springer,2005.309-317
  • 10M Ester,H Kriegel,J Sander,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C].In:Proc of the 1996 2nd Int'l Conf on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996.226-231

共引文献133

同被引文献29

  • 1肖宇,于剑.Gap statistic与K-means算法[J].计算机研究与发展,2007,44(z2):176-180. 被引量:7
  • 2王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 4Luxburg U V.A tutorial on spectral clustering [J].Statistics and Computing,2007,(4).
  • 5Shi Jianbo, Malik J.Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,(8).
  • 6Fowlkes C,Belongie S,Chung F, et al.Spectral grouping using the Nystrom method[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,(2).
  • 7王功聪.基于内容的网络行为分析[D].北京:北方工业大学,2013.
  • 8Zhang JianPei, Yang Yue, Yang Jing, et al. Spa- tial clustering algorithm based on opimizati on-Di- vision[C] // Proc of the 4th Int' 1 Conf on Fuzzy Systems and Knowledge Discovery, 2007 : 265-271.
  • 9Kaufman L, Rousseeuw P J. Finding groups in data., an introduction to cluster analysis[M]. New York .. John Wiley& Sons, 1990.
  • 10赖玉霞,刘建平.K-means算法的初始聚类中心的优化[J].计算机工程与应用,2008,44(10):147-149. 被引量:75

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部