期刊文献+

New interaction solutions of the Kadomtsev–Petviashvili equation 被引量:1

New interaction solutions of the Kadomtsev–Petviashvili equation
下载PDF
导出
摘要 The residual symmetry relating to the truncated Painlev6 expansion of the Kadomtsev-Petviashvili (KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods. The residual symmetry relating to the truncated Painlev6 expansion of the Kadomtsev-Petviashvili (KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期1-6,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11347183,11275129,11305106,11405110,and 11365017) the Natural Science Foundation of Zhejiang Province of China(Grant Nos.Y7080455 and LQ13A050001)
关键词 Kadomtsev-Petviashvili equation localization procedure residual symmetry Baicklund transfor-mation symmetry reduction solution Kadomtsev-Petviashvili equation, localization procedure, residual symmetry, Baicklund transfor-mation, symmetry reduction solution
  • 相关文献

参考文献28

  • 1Lie S 1891 Vorlesungen ber DifJerentialgleichungen mit Bekannten Infinitesimalen Transformationen (Leipzig: Teuber) (reprinted by Chelsea: New York; 1967).
  • 2Olver P J 1993 Application of Lie Groups to DifJerential Equation, Graduate Texts in Mathematics, 2nd edn. (New York: Springer-Verlag).
  • 3Bluman G W and Kumei S 1989 Symmetries and DifJerential Equation (Berlin: Springer-Verlag).
  • 4Wu J L and Lou S Y 2012 Chin. Phys. B 21120204.
  • 5Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203.
  • 6Liu X Z 2010 Chin. Phys. B 19 080202.
  • 7Jing J C and Li B 2013 Chin. Phys. B 22 010303.
  • 8Gu C H, Hu H andZhou Z X 2005 Darboux Transformations in Integrable Systems Theory and Their Applications to Geometry (Dordrecht: Springer).
  • 9Rogers C and Schief W K 2002 Backlund and Darboux Transformations Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press).
  • 10Jin Y, Jia M and Lou S Y 2013 Chin. Phys. Lett. 30020203.

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部