期刊文献+

Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure

Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure
下载PDF
导出
摘要 The terahertz quantum-cascade laser (THz QCL) based on bound-to-continuum structure is demonstrated. The X-ray diffraction measurement of the material shows a high crystalline quality of the active region. A THz QCL device was fabricated with semi-insulating surface-plasmon waveguide. The test device is lasing at about 3 THz and operating up to 60 K. It shows a single frequency property under different drive currents and temperatures. At 9 K, the maximum output power is greater than 2 mW with a threshold current density of 159 A/cm2. The terahertz quantum-cascade laser (THz QCL) based on bound-to-continuum structure is demonstrated. The X-ray diffraction measurement of the material shows a high crystalline quality of the active region. A THz QCL device was fabricated with semi-insulating surface-plasmon waveguide. The test device is lasing at about 3 THz and operating up to 60 K. It shows a single frequency property under different drive currents and temperatures. At 9 K, the maximum output power is greater than 2 mW with a threshold current density of 159 A/cm2.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期151-154,共4页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2014CB339803) the National High Technology Research and Development Program of China(Grant No.2011AA010205) the National Natural Science Foundation of China(Grant Nos.61131006 and 61321492) the Major National Development Project of Scientific Instrument and Equipment(Grant No.2011YQ150021) the National Science and Technology Major Project(Grant No.2011ZX02707) the Major Project(Grant No.YYYJ-1123-1)
关键词 TERAHERTZ quantum cascade lasers bound-to-continuum single mode terahertz, quantum cascade lasers, bound-to-continuum, single mode
  • 相关文献

参考文献12

  • 1Ma Y R, Guo S F and Duan S Q 2012 Chin. Phys. B 21037804.
  • 2Fu A B, Hao M R, Yang Y, Shen W Z and Liu H C 2013 Chin. Phys. B 22026803.
  • 3Kohler R, Tredicucci A, Beltram F, Beere H, Linfield E, Davies A, Ritchie D, Iotti R and Rossi F 2002 Nature 417156.
  • 4Danno J, Tamosiunas V, Fasching G, Kroll J, Unterrainer K, Beck M, Giovannini M, Faist J, Kremser C and Debbage P 2004 Opt. Express 121879.
  • 5Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Dhillon S S and Sirtori C 2003 Appl. Phys. Lett. 82 1518.
  • 6Williams B S 2007 Nat. Photon. 1 517.
  • 7Liu H C, Wachter M, Ban D, Wasilewski Z R, Buchanan M, Aers G C, Cao J C, Feng S L, Williams B S and Hu Q 2005 Appl. Phys. Lett. 87 141102.
  • 8Barbieri S, Alton J, Beere H E, Fowler J, Linfield E H and Ritchie D A 2004 Appl. Phys. Lett. 85 1674.
  • 9Williams B S, Kumar S, Hu Q and Reno J L 2004 Electron. Lett. 40 431.
  • 10Williams B S, Kumar S, Hu Q and Reno J L 2005 Opt. Express 13 3331.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部