期刊文献+

Molecular dynamics simulation of an argon cluster filled inside carbon nanotubes 被引量:1

Molecular dynamics simulation of an argon cluster filled inside carbon nanotubes
下载PDF
导出
摘要 The effects of the diameters of single-walled carbon nanotubes (SWCNTs) (7.83A to 27.40A) and temperature (20 K-45 K) on the equilibrium structure of an argon cluster are systematically studied by molecular dynamics simulation with consideration of the SWCNTs to be fixed. Since the diameters of SWCNTs with different chiralities increase when temperature is fixed at 20 K, the equilibrium structures of the argon cluster transform from monoatomic chains to helical and then to multishell coaxial cylinders. Chirality has almost no noticeable influence on these cylindrosymmetric structures. The effects of temperature and a non-equilibrium sudden heating process on the structures of argon clusters in SWCNTs are also studied by molecular dynamics simulation. The effects of the diameters of single-walled carbon nanotubes (SWCNTs) (7.83A to 27.40A) and temperature (20 K-45 K) on the equilibrium structure of an argon cluster are systematically studied by molecular dynamics simulation with consideration of the SWCNTs to be fixed. Since the diameters of SWCNTs with different chiralities increase when temperature is fixed at 20 K, the equilibrium structures of the argon cluster transform from monoatomic chains to helical and then to multishell coaxial cylinders. Chirality has almost no noticeable influence on these cylindrosymmetric structures. The effects of temperature and a non-equilibrium sudden heating process on the structures of argon clusters in SWCNTs are also studied by molecular dynamics simulation.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期378-382,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.11072242)
关键词 carbon nanotubes argon cluster molecular dynamics simulation carbon nanotubes, argon cluster, molecular dynamics simulation
  • 相关文献

参考文献26

  • 1lijima S 1991 Nature 354 56.
  • 2Tsang S C, Chen Y K, Harris P J F and Green M L H 1994 Nature 372 159.
  • 3Ajayan PM, Stephan 0, Redlich P and Colliex C 1995 Nature 375 564.
  • 4Ebbesen T W, Hiura H, Bisher M E, Treacy M M J, Shreeve-Keyer J L and Haushalter R C 1996 Adv. Mater. 8 155.
  • 5Liu S W, Zhu J J, Mastai Y, FeIner I and Gedanken A 2000 Chem. Mater. 12 2205.
  • 6Yang C K, Zhao J J and Lu J P 2003 Phys. Rev. Lett. 90257203.
  • 7Kang Y J, Choi J, Moon C Y and Chang K ] 2005 Phys. Rev. B 71 115441.
  • 8Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli M H, Gemming T, Nogues J, Skurruyev Y, Kalenczuk R J, Pichler T and Silva S R P 2006 Chem. Phys. Lett. 421 129.
  • 9Yang M, Yang Y, Liu Y, Shen G and Yu R 2006 Bioelectron. 21 1125.
  • 10Dawid A and Gburski Z 2003 J. Phys.: Condens. Matter 15 2399.

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部