期刊文献+

Influences of anionic and cationic dopants on the morphology and optical properties of PbS nanostructures 被引量:1

Influences of anionic and cationic dopants on the morphology and optical properties of PbS nanostructures
下载PDF
导出
摘要 Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures. Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期566-572,共7页 中国物理B(英文版)
基金 the Iranian National Science Foundation (INSF) for a research grant support the Islamic Azad University(I.A.U.), Masjed-Soleiman and Ahwaz Branches, respectively, for their financial support of this research work the financial support from the Ministry of Higher Education of Malaysia for the High Impact Research Grant (UM.C/1/HIR/MOHE/SC/21)
关键词 PbS nanostructures anionic dopant cationic dopant thermal evaporation optical properties PbS nanostructures, anionic dopant, cationic dopant, thermal evaporation, optical properties
  • 相关文献

参考文献20

  • 1Bakueva L. Konstantatos G. Levina L. Musikhin S and Sargent E H 2004 Appl. Phys. Lett. 84 3459.
  • 2Ortuno-Lopez M B. Valenzuela-Jauregui J J. Ramirez-Bon R. Prokhorov E and Gonzalez-Hernandez J 2002 1. Phys. Chern. Solids 63665.
  • 3Kumar S. Sharma T p. Zulfequar M and Husain M 2003 Physica B 325 8.
  • 4Liu C. Heo J. Zhang X and Adam I L 2008 1. Non-Cryst. Solids 354 618.
  • 5Wei H. Chen S. Ren X. Qian B. Su Y. Yang Z and Zhang Y 2012 Cryst. Eng. Comm. 14 7408.
  • 6Rajen Singh L. Bobby Singh S and Rahman A 2013 Chalcogenide Letters 10 167.
  • 7He X. Demchenko I N. Stolte W C. Van Buuren A and Liang H 2012 1. Phys. Chern. C 11622001.
  • 8He J. Blum I D. Wang H Q. Girard S N. Doak J. Zhao LD. Zheng J C. Casillas G. Wolverton C. Jose- Yacaman M. Seidman D N. Kanatzidis M G and Dravid V P 2012 Nano Lett. 12 5979.
  • 9Long G. Barman B. Delikanli S. Tsai Y T. Zhang p. Petrou A and Zeng H 2012 Appl. Phys. Lett. 101062410.
  • 10Das R and Kumar R 2012 Mater. Res. Bull. 47239.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部