期刊文献+

BASISITY PROBLEM AND WEIGHTED SHIFT OPERATORS

BASISITY PROBLEM AND WEIGHTED SHIFT OPERATORS
下载PDF
导出
摘要 We investigate a basisity problem in the space =lpA(D)and in its invariant sub-spaces. Namely, let W denote a unilateral weighted shift operator acting in the spacelpA(D), 1≤p《∞, by W zn=λnzn+1, n≥0, with respect to the standard basis λzn+1 n≥0. Applying the so-called "discrete Duhamel product" technique, it is proven that for any integer k ≥1 the sequence {(wi+nk)-1|W |Ei)knf}n≥0 is a basic sequence in Ei :=span{zi+n :n≥0} equivalent to the basis {zi+n}n≥0 if and only if fb(i) 6= 0. We also investigate a Banach algebra structure for the subspaces Ei, i≥0. We investigate a basisity problem in the space =lpA(D)and in its invariant sub-spaces. Namely, let W denote a unilateral weighted shift operator acting in the spacelpA(D), 1≤p《∞, by W zn=λnzn+1, n≥0, with respect to the standard basis λzn+1 n≥0. Applying the so-called "discrete Duhamel product" technique, it is proven that for any integer k ≥1 the sequence {(wi+nk)-1|W |Ei)knf}n≥0 is a basic sequence in Ei :=span{zi+n :n≥0} equivalent to the basis {zi+n}n≥0 if and only if fb(i) 6= 0. We also investigate a Banach algebra structure for the subspaces Ei, i≥0.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第5期1655-1660,共6页 数学物理学报(B辑英文版)
基金 supported by King Saud University,Deanship of Scientific Research,College of Science Research Center
关键词 BASIS basic sequence discrete Duhamel product Banach algebra weightedshift operator basis basic sequence discrete Duhamel product Banach algebra weightedshift operator
  • 相关文献

参考文献18

  • 1Bozhinov N. Convolutional Representations of Commutants and Multipliers. Sofia Publ House Bulg Acad Sci, 1988.
  • 2Dimovski I. Convolutional Calculus. Sofia Publ House Bulg Acad Sci, 1982.
  • 3Fage M K, Nagnibida N I. The Equivalence Problem of Ordinary Linear Differential Operators (in Russian). Novosibirsk: Nauka, 1987.
  • 4G¨urdal M. On basisity problem in the spaces ?pA??D, 1  p < 1. Numerical Funct Anal Optimization, 2011, 32(1): 59–64.
  • 5G¨urdal M. Description of extended eigenvalues and extended eigenvectors of integration operator on the Wiener algebra. Expo Math, 2009, 27: 153–160.
  • 6Haslinger F. On some new bases in spaces of holomorphic functions//Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981). Lecture Notes in Math, 1013. Berlin: Springer, 1983: 266–283.
  • 7Holub J. Shift basic sequences in the Wiener disk algebra. Proc Amer Math Soc, 1983, 88: 464–468.
  • 8Karaev M T. On some applications of the ordinary and extended Duhamel products. Siberian Math J, 2005, 46(3): 431–442.
  • 9Karaev M T. On extended eigenvalues and extended eigenvectors of some operator classes. Proc Amer Math Soc, 2006, 134: 2383–2392.
  • 10Karaev M T, G¨urdal M. Strongly splitting weighted shift operators on Banach spaces and unicellularity. Operators and Matrices, 2011, 5(1): 157–171.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部