期刊文献+

正极集流体为碳纳米管宏观膜的锂离子电池及其性能 被引量:6

Performance of lithium ion batteries using a carbon nanotube film as a cathode current collector
下载PDF
导出
摘要 采用超轻的碳纳米管(Carbon nanotubes,CNTs)宏观膜替代传统的金属铝集流体,替换后的锂离子电池以LiCoO2为活性物质,在1 C条件下电池首次放电比容量为132.8mAh·g-1,500次循环后容量保持率高于80%;当正极材料层面密度为16mg·cm-2时,LiCoO2-CNT电极的能量密度比LiCoO2-Al电极提高25%;同时,CNTs膜作为正极集流体的电池自放电率低于1.5%。该CNTs膜经电流刺激后仍保持较高的石墨化程度,相比金属集流体,其表面束状的多孔结构可有效保证正极材料层和集流体间的紧密接触。该膜有望替代传统铝箔成为新一代锂离子电池用集流体。 A carbon nanotube (CNT) film was used as the current collector and LiCoO2 as the cathode for a lithium ion battery. The battery showed a high initial discharge capacity of 132. 8 mAh·g-1 , a high retention rate of over 80% after 500 cycles under 1C and a low self-discharge rate of 1. 5% . When the areal density of the CNT film is 16 mg·cm-2 , the energy density of the LiCoO2-CNT battery is 25% larger than that of a LiCoO2-Al battery. The superior properties of the battery may be attributed to the high electrochemical stability of the graphitic structure of CNTs and the porous surface of the CNT film that ensures a high contact surface area between the current collector and the cathode material. The CNT film is promising as a new current collector for lithium ion bat-teries. Macroscopical carbon nanotubes (CNTs) was studied as current collector for lithium ion battery. LiCoO2 was used as active substance. The prepared battery showed high first special discharge capacity (132. 8mAh·g-1 ) and retention rate (over 80% ) after 500 cycles under 1C. When the areal density of cathode layer is 16mg cm-2 , energy density of LiCoO2-CNT battery is 25% larger than that of LiCoO 2-Al battery. Meanwhile, the battery with CNTs film as current collector has low self-discharge rate (1. 5% ). The superior properties of the battery maybe attribute to graphite structure even underwent current and porous surface of the CNTs film. The characteristic of the surface ensures the cathode to contact with CNTs film tightly. Considering the stable and outstanding properties , the CNTs film is expected to be a new current collector for lithium ion battery.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2014年第4期322-328,共7页 New Carbon Materials
基金 国家自然科学基金(51202095,51372104) 江西省科技支撑计划(20121BBE50027) 江西省自然科学基金(20122BAB216013)~~
关键词 碳纳米管 锂离子电池 集流体 能量密度 Carbon nanotubes Lithium ion battery Current collector Energy density
  • 相关文献

参考文献32

  • 1Tarascon J M, Armand M. Issues and challenges facing re- chargeable lithium Batteries [ J ]. Nature, 2001, 414 ( 6861 ) : 359 -360.
  • 2Armand M, Tarascon J M. Building better batteries [ J ]. Nature, 2008 , 451 (7179) : 652-653.
  • 3Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials forLi ion batteries[ J]. Carbon, 2000, 38 (2), 183-197.
  • 4Nishide H, Oyaizu K. Toward flexible batteries [J]. Science, 2008, 319(5864) : 737-738.
  • 5LI Jinhui ZHONG Shengwen XIONG Daoling CHEN Hao.Synthesis and electrochemical performances of LiCoO_2 recycled from the incisors bound of Li-ion batteries[J].Rare Metals,2009,28(4):328-332. 被引量:7
  • 6Pahdi A K, Najundaswamy K S, Goodenough J B. Phospho-oli- vines as positive-electrode materials for rechargeable lithium bat- teries[J]. Journal of The Electrochemical Society, 1997, 144 (4) : 1188-1194.
  • 7Landi B J, Ganter M J, Cress C D. Carbon nanotubes for lithi- um ion batteries[J]. Energy & Environmental Science, 2009, 2 (6) : 638-654.
  • 8Whittingham M S. Lithium batteries and cathode materials[ J]. Chemical Reviews, 2004, 104(10) : 4282-4292.
  • 9Zhong S W, Zhao Y J, Liu Q G, et al. Characteristics and elec- trochemical performance of cathode material Co-coating LiNiO2 for Li-ion batteries[ J]. Transaction of Nonferrous Metals Society of China, 2006, 16(1) :137-141.
  • 10杜柯,胡国荣.锂离子电池正极材料富锂锰基固溶体的研究进展[J].科学通报,2012,57(10):794-804. 被引量:35

二级参考文献48

  • 1张世超,蒋涛,白致铭.电解铜箔材料中晶面择优取向[J].北京航空航天大学学报,2004,30(10):1008-1012. 被引量:20
  • 2南俊民,韩东梅,崔明,左晓希.溶剂萃取法从废旧锂离子电池中回收有价金属[J].电池,2004,34(4):309-311. 被引量:46
  • 3戴永年,杨斌,姚耀春,马文会,李伟宏.锂离子电池的发展状况[J].电池,2005,35(3):193-195. 被引量:67
  • 4欧秀芹,孙新华,赵庆云,范飞.锂离子废电池资源化技术进展[J].无机盐工业,2005,37(9):11-14. 被引量:14
  • 5秦毅红,齐申.有机溶剂分离法处理废旧锂离子电池[J].有色金属(冶炼部分),2006(1):13-16. 被引量:17
  • 6Kim J.,Byoug S.K.,Lee J.G,Cho J.,and Byung P.P.W.,Differential voltage analyses of high-power,lithium-ion cells:Ⅰ.Technique and application,J.Power Sources,2005,139 (1-2):289.
  • 7Li J.G.,He X.M.,and Zhao R.S.,Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries,Trans.Nonferrous Met.Soc,China,2007,17 (6):1324.
  • 8Li Y.,Michio T.,and Wang B.F.,A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling,Electrochem.Acta,2006,51 (9):3228.
  • 9Veronica P.,Aintzane G.,Izaskun G.M.,Iratxe M.,Miguel B.,Oscar M.,and Teofilo R.,New freeze-drying method for LiFePO4 synthesis,J.Power Sources,2007,171 (2):879.
  • 10Wang Y.Q.,Wang J.L.,Yang J.,and Null A.Y.,High-rate LiFePO4 electrode material synthesis by a novel route from FePO4·4H2O,Adv.Funct.Mater.,2006,16 (2):2135.

共引文献113

同被引文献37

  • 1倪江锋,周恒辉,陈继涛,张新祥.锂离子电池集流体的研究[J].电池,2005,35(2):128-130. 被引量:27
  • 2王震坡,孙逢春,林程.不一致性对动力电池组使用寿命影响的分析[J].北京理工大学学报,2006,26(7):577-580. 被引量:135
  • 3唐致远,贺艳兵,刘元刚,刘强,阳晓霞.负极集流体铜箔对锂离子电池的影响[J].腐蚀科学与防护技术,2007,19(4):265-268. 被引量:20
  • 4WHITEHEAD A H, SCHREIBER M. Current collectors for positive electrodes of lithium-based batteries [J]. Journal of the Electrochemical Society, 2005, 152 (11): A2105-A2113.
  • 5MYUNG S T, YASHIRO H. Electrochemical stability of aluminum current collector in alkyl carbonate electrolytes containing lithium bis(pentafluoroethyl- sulfonyl)imide for lithium-ion batteries [J]. Journal of Power Sources, 2014, 271 (12): 167-173.
  • 6DOBERDO I, LOFFLER N, LASZCZYNSKI N, et al. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector [J]. Joumal of Power Sources, 2014, 248:1000-1006.
  • 7MYUNG S T, HITOSHI Y, SUN Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries [J]. Journal of Materials Chemistry, 2011, 21 (27): 9891-9911.
  • 8KANAMURA K, UMEGAKI T, SHIRAISHI S, et al. Electrochemical behavior of A1 current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4FgSO2)(CF3SO2)N [J]. Journal of the Electrochemical Society, 2002, 149 (2): A185-A194.
  • 9HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties [J]. Journal of Power Sources, 2011,196 (7): 3623-3632.
  • 10MUKHOPADHYAY A, SHELDON B W. Deformation and stress in electrode materials for Li-ion batteries [J]. Progress in Materials Science, 2014, 63:58-116.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部