期刊文献+

新型可降解PEI衍生物的表征及其在Brl-3A细胞中的毒性和转染研究 被引量:1

Characterizations of Novel Degradable Polyethyleneimine Derivatives and Transfection and Cytotoxicity Studies on Brl-3A
原文传递
导出
摘要 目的:对新型可降解高分子进行表征,研究其在Brl-3A细胞中的毒性和转染效率,以及连接剂比例对以上方面的影响。方法:通过化学方法合成不同比例PEI-Tr高分子,考察其包裹质粒DNA形成纳米颗粒的粒径和电位,以CCK-8方法考察Brl-3A细胞中的细胞毒性,以荧光素酶质粒为报告基因考察Brl-3A细胞中的转染效率。结果:PEI-Tr材料能形成200 nm以下带20 mV左右正电荷的纳米颗粒,具有较好的细胞内吞能力和溶液稳定性,细胞毒性实验证明,随着浓度增加PEI-Tr材料显示了远低于PEI-25kDa的细胞毒性,细胞转染实验表明其拥有高效输送质粒的能力。结论:PEI-Tr是一种高效低毒的可降解聚阳离子载体,在基因输送领域有很大的潜力;连接剂的比例在聚阳离子功能中起到重要作用。 Objective: To characterize a novel biodegradable polymer, investigate its cell cytotoxicity and gene transfection efficiency, and the influence of linker's ratio. Methods: PEI-Tr series were synthesized, and the particle size and Zeta potential of polymer-DNA nanoparticles were estimated, then, cell cytotoxicity and transfection efficiency were tested. Results: PEI-Tr could form nanoparticles under 200 nm, and its Zeta potential was about 20 mV, which indicated that it had a good cell endocytosis capability and stability. The Brl-3A cytotoxicity and transfection results suggested that PEI-Tr had a high plasmid transfection ability within low cell toxicity. Conclusion: PEI-Tr is a promising, efficient and low-toxic gene carrier, and the linker ratio is an important factor in carrier design.
出处 《现代生物医学进展》 CAS 2014年第31期6032-6034,6106,共4页 Progress in Modern Biomedicine
基金 国家自然基金项目(81373366)
关键词 基因载体 PEI衍生物 细胞毒性 转染效率 比例 General carrier PEI derivative Cytotoxicity Transfection Ratio
  • 相关文献

参考文献20

  • 1Mulligan,R.C. The basic science of gene therapy. [J] Science, 1993, 260:926-932.
  • 2Cristiano R J, Xu B, Nguyen D, et al. Viral and nonviral gene delivery vectors for cancer gene therapy [J]. Cancer Detect Prey, 1998, 225: 445-454.
  • 3Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. nature, 1998, 391(6669): 806-811.
  • 4Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleoti- de RNAs mediate RNA interference in cultured mammalian cells [J]. nature, 2001, 411 (6836): 494-498.
  • 5Baker M. RNA interference: Homing in on delivery [J]. Nature, 2010, 464(7292): 1225-1228.
  • 6Whitehead K A, Langer R, Anderson D G. Knocking down barriers: advances in siRNA delivery[J]. Nature reviews Drug discovery, 2009, 8(2): 129-138.
  • 7Carmen Alvarez-Lorenzo, Rafael Barreiro-lglesias, Angel Concheiro, et al. Biophysical characterization of complexation of DNA with block copolyrners ofpoly(2-dimethylaminoethyl) methacrylate, poly(ethyle- ne oxide), and poly(propylene oxide)[J]. Langmuir, 2005, 21 : 5142- 5148.
  • 8Bartel M A, Weinstein J R, Schaffer D V. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery[J]. Gene therap- y, 2012, 19(6): 694-700.
  • 9Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduetion [J]. Current gene therapy, 2004, 4(4): 357-372.
  • 10Hester M E, Foust K D, Kaspar R W, et al. AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS[J]. Current gene therapy, 2009, 9(5): 428-433.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部