期刊文献+

基于4 D-CT的最大密度投影图像与基于PET-CT不同SUV值勾画的胸段食管癌原发肿瘤IGTV比较研究 被引量:2

Comparison of internal gross target volumes delineated on the maximum intensity projection of four-dimensional CT images and positron emission tomography-CT for primary thoracic esophageal cancer
原文传递
导出
摘要 目的:比较基于4D-CT的最大密度投影(MIP)图像与基于18F-FDG PET-CT不同SUV值勾画的胸段食管癌原发肿瘤靶区间的体积大小、适形指数( CI)和包含度( DI)。方法15例胸段食管癌患者序贯完成3D-CT、4D-CT、18 F-FDG PET-CT 胸部定位扫描。在4D-CT的MIP图像上勾画食管原发肿瘤的内大体肿瘤体积 IGTVMIP ,在 PET-CT 的 PET 图像上分别选择不同 SUV 阈值(≥2.0、2.5、3.0、3.5)、最大SUV值(SUVmax)的不同百分比(≥20%、25%、30%、35%、40%)及人工视觉观察勾画食管原发肿瘤靶区。结果 IGTVPET 2.5、IGTVPET20%、IGTVPETMAN与IGTVMIP体积比值最接近于1,分别为0.86、0.88、1.06;IGTVPET2.0、IGTVPET2.5、IGTVPET20%、IGTVPET25%、IGTVPETMAN与IGTVMIP间CI分别为0.55、0.56、0.56、0.54、0.55,均明显大于其他 IGTVPET与 IGTVMIP间的 CI 值(Z=-3.408~2.215,P<0.05)。 IGTVPET2.5、IGTVPET20%、IGTVPETMAN与IGTVMIP相互间DI值分别为0.77、0.82、0.71和0.67、0.68、0.82,差异均不明显(P >0.05)。结论基于PET图像SUV阈值2.5、最大SUV值的20%及人工视觉观察3种方法与基于4D-CT的MIP图像所勾画胸段食管癌原发肿瘤靶区体积大小最接近且空间错位相对较小。 Objective To compare volumetric size, conformity index (CI), degree of inclusion (DI) of internal gross target volumes (IGTV) delineated on 4D-CT-MIP and PET-CT images for primary thoracic esophageal cancer. Methods Fifteen patients with thoracic esophageal cancer sequentially underwent enhanced 3D-CT, 4D-CT and PET-CT simulation scans. IGTVMIP was obtained by contouring on 4D-CT maximum intensity projection ( MIP). The PET contours were determined with nine different threshold methods (SUV≥2.0, 2.5, 3.0, 3.5), the percentages of the SUVmax(≥20%, 25%, 30%, 35%, 40%) and manual contours. The differences in size, conformity index (CI), degree of inclusion ( DI) of different volumes were compared. Results The volume ratios ( VRs) of IGTVPET2. 5 to IGTVMIP , IGTVPET20% to IGTVMIP, IGTVPETMAN to IGTVMIP were 0.86, 0.88, 1.06, respectively, which approached closest to 1. The CIs of IGTVPET2.0,IGTVPET2.5,IGTVPET20%,IGTVPETMAN and IGTVMIP which were 0.55, 0.56, 0.56, 0.54,0.55, respectively, were significantly larger than other CIs of IGTVPET and IGTVMIP (Z= -3.408-2.215,P 〈0.05). There were no statistical significance in the DIs of IGTVMIP and IGTVPET2.5,IGTVMIP and IGTVPET20%, IGTVMIP and IGTVPETMAN(0.77,0.82,0.71,0.67, 0.68,0.82,P〉0.05). Conclusions The targets delineated based on SUV threshold setting of≥2.5, 20% of the SUVmax and manual contours on PET images correspond better with the target delineated on maximum intensity projection of 4D-CT images than other SUV thresholding methods.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2014年第9期683-687,共5页 Chinese Journal of Radiological Medicine and Protection
关键词 胸段食管癌 标准摄取值 内大体肿瘤体积 18 F-FDG PET-CT 4D-CT Thoracic esophageal cancer 18 F-FDG PET-CT Four-dimensional computed tomography Standardized uptake value Internal gross target volume
  • 相关文献

参考文献11

  • 1Wang W, Li J, Zhang Y, et al. Comparison of patient-specific internal gross tumor volume for radiation treatment of primary esophageal cancer based separately on three-dimensional and four-dimensional computed tomography images [ J ]. Dis Esophagus, 2014, 27(4): 348-354.
  • 2Muijs CT, Beukema JC, Pruim J, et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer [ J ]. Radiother Oncol, 2010,97(2) : 165-171.
  • 3Chang G, Chang T, Pan T, et al. Determination of internal target volume from a single positron emission tomography/ computed tomography scan in lung cancer[ J]. Int J Radiat Oncol Biol Phys, 2012,83 (1) : 459-466.
  • 4Hashimoto T, Shirato Ha Kato M, et al. Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors [J]. Int J Radiat Oncol BiolPhys, 2005, 61(5): 1559-1564.
  • 5Muirhead R, McNee SG, Featherstone C, et al. Use of maximum intensity projections (MIPs) for target outlining in 4DCT radiotherapy planning [ J ]. J Thorac Oncol, 2008, 3 (12) : 1433-1438.
  • 6Ezhil M, Vedam S, Balter P, et el. Determination of patient- specific internal gross tumor volumes for lung cancer using four- dimensional computed tomography [ J ]. Radiat Oncol, 2009, 4:4.
  • 7Rietzel E, Liu AK, Chen GT, et el. Maximum-intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning[J]. Int J Radiat Oncol Biol Phys, 2008, 71 (4) : 1245-1252.
  • 8Vesprini D, Ung Y, Dinniwell R, et al. Improving observer variability in target delineation for gastro-oesophageal cancer---the role of (18F) fluoro-2-deoxy-D-glueose positron emission tomography/eomputed tomography [ J ]. Clin Oncol, 2008, 20 (8) : 631-638.
  • 9Gun H, Zhu H, Xi Y, et al. Diagnostic and prognostic value of 18F-FDG PET/CT for patients with suspected recurrence from squamnus cell carcinoma of the esophagus [J]. J Nuel Med, 2007, 48(8) : 1251-1258.
  • 10Vail FS, Nagda S, Hall W, et al. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy [J]. Int J Radiat Oncol Biol Phys, 2010, 78(4) : 1057-1063.

同被引文献10

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部