期刊文献+

混合对数正态分布最大值的极限分布 被引量:1

The Limiting Distributions of Maxima for Mixed Logarithm Normal Distributions
下载PDF
导出
摘要 设{Xn,n≥1}是独立同分布的随机变量序列,并且每个随机变量Xn服从混合对数正态分布.Mn=max{Xk,1≤k≤n}表示{Xn,n≥1}的部分最大值,同服从混合对数正态分布的独立随机变量最大值的极限分布以及相应的赋范常数. Let { Xn,n ≥ 1 } be a seguence of independent and identically distributed random variables with each Xn following mixed logarithm normal distribution.Let Mn =max [Xk,1 ≤ k ≤ n } denote the partial maximum of { Xn,n ≥ 1 }.In this paper,the limiting distributions of extremes of independent identically distributed random variables with mixed logarithm normal distribution and corresponding norming constants are studied.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期668-672,共5页 Journal of Sichuan Normal University(Natural Science)
基金 贵州省科技基金(黔科合J字LKZS(2014)29号)资助项目
关键词 混合分布 对数正态分布 极限分布 赋范常数 mixed distribution logarithm normal distribution limiting distribution normalizing constant
  • 相关文献

参考文献8

二级参考文献46

  • 1凌成秀,彭作祥.属于同一吸引场的分布函数尾等价的充要条件[J].西南师范大学学报(自然科学版),2005,30(1):18-21. 被引量:3
  • 2毛瑞华,李竹渝.随机单位根过程[J].四川大学学报(自然科学版),2006,43(6):1192-1196. 被引量:1
  • 3FANG Yu-guang. Hyper-Erlang Distribution Model and Its Application in Wireless Mobile Networks [J]. Wireless Networks, 2001, 7(3) 211-219.
  • 4FRICKER C, ROBERT P, TIBI D. On the Rates of Convergence of Erlang's Model [J]. Journal of Applied Probability, 1999, 36(4).. 1167-1184.
  • 5MICHAEL V. A Note on the Rate of Convergence to Equilibrium for Erlang's Model in the Subcritical Case [J]. Journal of Applied Probability, 2000, 37(3): 918-923.
  • 6HALL P. On the Rate of Convergence of Normal Extremes [J]. Journal of Applied Probability, 1979, 16: 433-439.
  • 7HALL W J, WELLNER J A. The Rate of Convergence in Law of the Maximum of an Exponential Sample [J]. Statistica Neerlandica, 1979, 33(3): 51-154.
  • 8DE HAAN L, RESNICK S I. Second Order Regular Variation and Rates of Convergence in Extreme Value Theory [J]. Annals of Probability, 1996, 24(1): 97-124.
  • 9MLADENOVIC P, VUKMIROVIC J. Rates of Convergence in Certain Limit Theorem for Extreme Values [J]. Journal of Mathematical Analysis and Applications, 2009, 363(1)~ 287-295.
  • 10LIU Ke, PENG Zuo-xiang. The Convergence Rates of Conditional Moments [J]. 西南大学学报,自然科学版, 2007, 29 (1): 5-8.

共引文献17

同被引文献15

  • 1JOHNSON N L, KOTZ S, BALAKRISHNAN N. Continuous Univariate Distributions [M]. 2nd ed. New Y ork: JohnWily and Sons, 1994.
  • 2AZZALINI A, VALLE D. The Multivariate Skew-Normal Distribution [J]. Biometrika, 1996, 83(4) : 7 1 5 - 726.
  • 3BENNETT P N. Using Asymmetric Distributions to Improve Classifier Probabilities: A Comparison of New and StandardParametric Methods [C]. Proceedings of the Annual ACM Conference on Research and Development in InfomationRetrieval, New York: ACM, 2003: 111 -118.
  • 4CHEN S , HUANG J. Rates of Convergence of Extreme for Asymmetric Normal Distribution [J]. Statistics and ProbabilityLetters, 2014, 84(1) : 158-168.
  • 5LIAO X, PENG Z, NADARAJAH S. Tail Behavior and Limit Distribution of Maximum of Logarithmic General Error Distribution [J]. Comm Statist Theory M ethods,2014, 43(24) : 5276 - 5289.
  • 6HUANG J , LIU Y, LUO Y. The Limiting Distribution of Finite Mixture General Errror Distribution [J] . 重庆市范大学学报(自然科学版),2015, 32(2): 95 - 98.
  • 7VENTURINI S, DOMINICI F, PARMIGIANI G. Gamma Shape Mixtures for Heavy-Tailed Distributions [J]. The Annalsof Applied Statistics, 2008,2(2) : 756 - 776.
  • 8MCLACHLAN G J , BEAN R W , PEEL D. A Mixture Model-Based Approach to the Clustering of Microarray ExpressionData [J]. Bioinformatics- 2002, 18(2) : 413 - 422.
  • 9FIGUEIREDO M A T , JAIN A K. Unsupervised Learning of Finite Mixture Models [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002, 24(3) : 381 - 396.
  • 10CHEN J , LI P. Hypothesis Test for Normal Mixture M odels: The EM Approach [J]. Annals of Statistics, 2009,37(5) : 2523-2542.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部