摘要
设{Xn,n≥1}是独立同分布的随机变量序列,并且每个随机变量Xn服从混合对数正态分布.Mn=max{Xk,1≤k≤n}表示{Xn,n≥1}的部分最大值,同服从混合对数正态分布的独立随机变量最大值的极限分布以及相应的赋范常数.
Let { Xn,n ≥ 1 } be a seguence of independent and identically distributed random variables with each Xn following mixed logarithm normal distribution.Let Mn =max [Xk,1 ≤ k ≤ n } denote the partial maximum of { Xn,n ≥ 1 }.In this paper,the limiting distributions of extremes of independent identically distributed random variables with mixed logarithm normal distribution and corresponding norming constants are studied.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第5期668-672,共5页
Journal of Sichuan Normal University(Natural Science)
基金
贵州省科技基金(黔科合J字LKZS(2014)29号)资助项目
关键词
混合分布
对数正态分布
极限分布
赋范常数
mixed distribution
logarithm normal distribution
limiting distribution
normalizing constant