期刊文献+

中等过冷度下含不凝性气体蒸汽冷凝传热特性 被引量:10

Analysis of experiments for steam condensation in presence of non-condensable gases with moderate wall subcooling
下载PDF
导出
摘要 通过对竖直圆管外表面含不凝性气体蒸汽在中等壁面过冷度条件下的冷凝传热实验研究,分析了混合气体压力0.4~0.6 MPa、空气含量0.07~0.52以及壁面过冷度13~25℃时,蒸汽的冷凝换热特性,给出了冷凝传热过程中的经验关联式,并对氦气的存在及其对换热过程的影响进行了初步分析。结果表明:在混合气体压力及不凝性气体含量不变的条件下,壁面过冷度的降低利于冷凝传热系数的增长;所得到的经验关联式在低过冷度条件下能较好地对换热过程进行预测,且其与实验值的误差在±15%以内;实验条件下未发生氦气分层现象,相同不凝性气体质量分数条件下,氦气的存在会使冷凝传热系数降低约20%。 An experimental investigation was conducted to evaluate the steam heat removal capacity in the presence of non-condensable gases (e.g. air, helium) over a vertical tube external surface under moderate wall subcooling. Under steam/air condition, condensation heat transfer coefficients were obtained under wall subcooling ranging from 13℃ to 25℃, total pressure ranging from 0.4 MPa to 0.6 MPa and air mass fraction ranging from 0.07 to 0.52. The experiments for the influence of wall subcooling on steam condensation heat transfer with a fixed pressure and air mass fraction were made. Under the same pressure with the same non-condensable gases mass fraction, the effect of wall subcooling on condensation heat transfer coefficient with non-condensable gases was negative. An empirical correlation for heat transfer coefficient was developed, covering all data points within 15%. Under steam/air/helium (simulating hydrogen) condition, the effect of helium mole fraction in non-condensable gases on heat transfer coefficient was investigated under wall subcooling ranging from 18℃ to 27℃, total pressure ranging from 0.53 MPa to 0.6 MPa, steam mass fraction ranging from 0.6 to 0.92 and helium mole fraction in non-condensable gases 0.3. The condensation heat transfer coefficients obtained from steam/air/helium condition were lower than those obtained from steam/air case. Helium stratification was not found under the experimental conditions. With the same non-condensable gases mass fraction, presence of helium lowered condensation heat transfer coefficient by around 20%.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第10期3884-3890,共7页 CIESC Journal
关键词 气体 壁面过冷度 凝结 传热 gas wall subcooling condensation heat transfer
  • 相关文献

参考文献19

  • 1Rosa J C, Escriva A, Herranz L E, Cicero T, Munoz-Cobo J L.Review on condensation on the containment structures [J]. Progressin Nuclear Energy, 2009, 51: 32-66.
  • 2Byun C S , Jerng D W , Todreas N E, Driscoll M J. Conceptual designand analysis of a semi-passive containment cooling system for a largeconcrete containment [J]. Nuclear Engineering and Design, 2000,199: 227-242.
  • 3Kang Y M, Park G C. An experimental study on evaporative heattransfer coefficient and applications for passive cooling of AP600steel containment [J]. Nuclear Engineering and Design, 2001, 204:347-359.
  • 4Kageyama T, Peterson P F, Schrock V E. Diffusion layer modeling ofcondensation in vertical tubes with noncondensable gases [J]. NuclearEngineering and Design, 1993, 141: 289-302.
  • 5Ganguli A, Patel A G, Maheshwari N K, Pandit A B. Theoreticalmodeling of condensation of steam outside different verticalgeometries (tube, flat plates) in the presence of noncondensable gaseslike air and helium [J]. Nuclear Engineering and Design, 2008, 238:2328-2340.
  • 6Chen H T, Chang S M, Lan Z. Effect on noncondensable gas onlaminar film condensation along a vertical plate fin [J]. InternationalJournal of Heat and Fluid Flow, 1998, 19: 374-381.
  • 7Lee K Y, Kim M H. Experimental and empirical study of steamcondensation heat transfer with a noncondensable gas in asmall-diameter vertical tube [J]. Nuclear Engineering and Design,2008, 238: 207-216.
  • 8Su J Q, Sun Z N, Fan G M, Ding M. Experimental study of the effectof non-condensable gases on steam condensation over a vertical tubeexternal surface [J]. Nuclear Engineering and Design, 2013, 5:201-208.
  • 9童正明,徐波,李生娟,叶立.含不凝性气体的蒸汽在垂直圆管内表面冷凝换热的实验研究[J].上海理工大学学报,2005,27(2):120-122. 被引量:9
  • 10侯银燕,李维.载气汽油蒸汽在水平圆管内的冷凝[J].低温与超导,2010,38(1):49-52. 被引量:1

二级参考文献7

共引文献8

同被引文献50

  • 1林智荣,袁新.平面叶栅气膜冷却流动的数值模拟[J].工程热物理学报,2006,27(4):580-582. 被引量:5
  • 2林智荣,袁新.自发凝结流动数值模拟方法及其在Laval喷管中的应用[J].工程热物理学报,2006,27(1):42-44. 被引量:11
  • 3周兴东,马学虎,兰忠,宋天一.滴状冷凝强化含不凝气的蒸气冷凝传热机制[J].化工学报,2007,58(7):1619-1625. 被引量:20
  • 4魏保太,刘晔,魏杰.蒸汽——不凝性气体物系水平管外自然对流膜状凝结换热的研究[J].工程热物理学报,1990,11(4):413-417. 被引量:3
  • 5Bakhtar F, Tochai M T M. An investigation of two-dimensional flows of nucleating and wet steam by the time-marching method [J]. International Journal of Heat and Fluid Flow, 1980, 2(1): 5-18.
  • 6Bakhtar F, Young J B, White A J, et al. Classical nucleation theory and its application to condensing steam flow calculations [J]. Proc. IMechE, 2005, (219): 1315-1333.
  • 7Li L, Li Y, Wu L, et al. Numerical study on condensing flow in low pressure cylinder of a 300MW steam turbine//ASME Turbo Expo 2010: Power for Land, Sea, and Air[C]. American Society of Mechanical Engineers, 2010: 2289-2296.
  • 8Gyarmathy G, Lesch F. Fog droplet observations in Laval nozzles and in an experimental turbine//Proceedings of the Institution of Mechanical Engineers, Conference Proceedings[C]. SAGE Publications, 1969, 184(7): 29-36.
  • 9Patel Y, Patel G, Turunen-Saaresti T. The effect of turbulence and real gas models on the two phase spontaneously condensing flows in nozzle//ASME Turbo Expo 2013: Turbine Technical Conference and Exposition[C]. American Society of Mechanical Engineers, 2013: V05BT25A018-V05BT25A018.
  • 10Hill P G. Condensation of water vapor during supersonic expansion in nozzles [J]. J. Fluid Mech., 1966, 25(3): 593-620.

引证文献10

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部