期刊文献+

低存储高速可重构LDPC码译码器设计及ASIC实现 被引量:8

Design and ASIC Implementation of Low Memory High Throughput Reconfigurable LDPC Decoder
下载PDF
导出
摘要 在星上应用中,能够融合多种标准的可重构低密度奇偶校验(LDPC)码译码器受到越来越广泛地关注。然而,由于星上存储资源受限以及空间辐射效应对存储器的影响,传统需要消耗大量存储资源的可重构LDPC译码器很难适用于星上高速信号处理。该文提出一种新颖的可重构译码器架构,通过分层流水线迭代实现高吞吐率,通过结合不同LDPC码字的结构特点实现低复杂度的可重构译码,通过简化存储迭代传递信息以及信道对数似然比(LLR)信息节省存储空间。流片实现结果表明,在台积电(TSMC)0.13 mm工艺下,单路译码器最高可达1.5 Gbps的吞吐率,占用7.8 mm2的硅片面积,最高节省40%的存储资源。 Reconfigurable Low-Density Parity-Check (LDPC) codes decoders adapted to multiple standards attracte more and more attentions in thesatellite application. However, due to the memory resource is limited on the satellite and sensitive to the space radiation effect, the conventional reconfigurable decoders are difficult to be applied to on-board processing for their high memory requirements. This paper presents a novel reconfigurable decoder with layered pipelined architecture to achieve high throughput and realizes low complexity by combining the structural characteristics of different LDPC codes. The memory size is reduced by simplifying the storage of the channel intrinsic Logarithm Likelihood Ratio (LLR) messages and the passed messages in the process of iterative decoding. The decoder is fabricated in the TSMC 0.13mm standard CMOS technology and the result shows that each branch can achieve a throughput up to 1.5 Gbps with 7.8 mm2 core area occupancy and can save 40%storage resource at most.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第10期2287-2292,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61132002 61301079 91338103) 北京高等学校青年英才计划项目 清华大学自主科研项目(2011Z05117)资助课题
关键词 低密度奇偶校验(LDPC)码 无线通信 可重构 低存储 高吞吐率 专用集成电路(ASIC) Low-Density Parity-Check (LDPC) code Wireless communication Reconfigurable Low memory Highthrouthput Application Specific Integrated Circuit (ASIC)
  • 相关文献

参考文献16

  • 1Gallager R G. Low-density parity-check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
  • 2Hosung P, Seokbeom H, Jong-Seon N, et al.. Construction of high-rate regular quasi-cyclic LDPC codes based on cyclic difference families[J]. IEEE Transactions on Communications, 2013, 61(8): 3108-3113.
  • 3Yang M, Ryan W E, and Yah L. Design of efficiently encodable moderate-length high-rate irregular LDPC codes[J[ IEEE Transactions on Communications, 2004, 52(4): 564-571.
  • 4Tiwari H D, Huynh N B, and Yong B C. Flexible LDPC decoder using stream data processing for 802.11n and 802.16e[J]. IEEE Transactions on Consumer Electronics, 2011, 57(4): 1505-1512.
  • 5Yiyan W, Bo R, Salehian K, et al.. Cloud transmission: anew spectrum-reuse friendly digital terrestrial broadcasting transmission system[J]. IEEE Transactions on Broadcasting, 2012, 58(3): 329-337.
  • 6Luan Zhi-bin, Pei Yu-kui, and Ge Ning. A fast convergence and area-efficient decoder for quasi-cyclic low-density parity-check codes[C]. IEEE 19th Asia-Pacific Conference on Communications, Bali, Indonesia, 2013: 1022-1027.
  • 7Bo X, Rui S, An P, et al.. An area-efficient and low-power multirate decoder for quasi-cyclic low-density parity-check codes[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(10): 1447-1460.
  • 8Yongmiu J, Yunho J, Seongjoo L, et al.. Low-complexity multi-way and reconfigurable cyclic shift network of QC-LDPC decoder for Wi-Fi/WIMAX applications[J]. IEEE Transactions on Consumer Electronics, 2013, 59(3): 467-475.
  • 9Zaishuang L, Kewu P, Weilong L, et al.. Rate-compatible QC-LDPC codes design based on EXIT chart analysis[C]. 20i2 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, 2012: 921-926.
  • 10Cui Z Wang Z, and Zhang X. Reduced-complexity column-layered decoding andiraplementation for LDPCcodes[J]. IET Communications, 2011, 5(15): 2177-2186.

二级参考文献13

  • 1GENG Chunhua, PEI Yukui, WEN Wujie, et al. ASIC Implementation of Fractionally Spaced Rake Receiver for High Data Rate UWB Systems [J]. Electronics Letters, 2011, 47(3): 215-217.
  • 2Kousa M. Enhancement of RAKE receivers forultra-wideband reception[J]. IETCommun, 2008, 2(3): 421-431.
  • 3Proakis J G. Digital Communication [M]. 4 ED. New York: McGraw-Hill, 2011.
  • 4Falconer D, Ariyavisitakul S L, Benyanim-Seeyar A, et al. Frequency domain equalization for single-carrier broadband wireless systems [J]. IEEE Commun Mag, 2002, 40(4) 58-66.
  • 5Moridi S, Sari H. Analysis of decision-feedback carrier recovery loops with application to 16 QAM digital radio systems [C]//ICC confRec. Boston: IEEE, 1983: 671-675.
  • 6Hung K C, Lin D W. Joint carrier recovery and multimodulus blinddeeision-feedbaek equalization under high-order QAM [C]//Global Telecommunications Conference. NJ, USA: IEEE, 2004:2281-2285.
  • 7Stark A, Raphaeli D. Combining decision-feedback equalization and carrier recovery for two-dimensional signal constellations [J]. IEEE Trans on Commun, 2007, 55(10): 2012-2021.
  • 8Parhi K K. VLSI Digital Singal Processing Systems: Design and Implementation[M]. New Jersey, USA: John Wiley Sons, 1999.
  • 9Moridi S, Sari H. Analysis of four decision-feedback carrier recovery loops in the presence of intersymbol interference[J]. IEEE Trans on Commun, 1985, 33(6) : 543 - 550.
  • 10IEEE P802.15-02/368r5 SG3a. Channel Modeling Sub Committee Final Report [S]. New York: IEEE 802.15. SG3a, 2002.

共引文献2

同被引文献42

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部