期刊文献+

基于窄波束和平地假设的运动补偿方向研究 被引量:3

The Research on the Direction of Motion Compensation According to the Narrow Beam and Flat Earth Hypothesis
下载PDF
导出
摘要 窄波束和平地假设是在合成孔径雷达(SAR)运动补偿过程中常用的一种假设,其指明可以将SAR平台相对场景中任意点目标运动误差的空变近似为相同最短斜距处波束中心视线方向上相应点目标的距离空变。该文在正侧视模式和斜视模式运动补偿模型的基础上,从理论上证明了仅存在高度误差时,窄波束和平地假设运动补偿最优的方向垂直于雷达波束中心视线,说明了沿该方向进行运动补偿的原因,并用仿真实验验证了其正确性。 The narrow beam and flat earth hypothesis is a widely used assumption in Synthetic Aperture Radar (SAR) motion compensation. It proposes an approach in dealing with the space variance of the motion errors of the moving platform relative to arbitrary point targets in the scene, which is approximately considered as the space variance of the associated distance of the same range gate in the direction of radar beam center. Based on the narrow beam and flat earth hypothesis, this paper derives an implied conclusion that the optimal direction of motion compensation is perpendicular to the line of sight transmitted from the radar beam center only when the height error exists. This analysis is suitable for both broadside and squinted motion compensation models. Then, the reason of the hypothesis in carrying out motion compensation is presented in detail and its validity is confirmed by means of simulated experiments.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第10期2464-2468,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金优秀青年基金(61222108) 国家"十二五"预研项目(51307030102)资助课题
关键词 合成孔径雷达 运动误差 窄波束和平地假设 运动补偿最优方向 Synthetic Aperture Radar (SAR) Motion errors Narrow beam and fiat earth hypothesis Optimaldirection of motion compensation
  • 相关文献

参考文献14

  • 1Zhang Lei, Sheng Jia-lian, Xing Meng-dao, et al.. Wavenumber-domain autofocusing for highly squinted UAV SAR imagery[J]. IEEE Sensors Journal, 2012, 12(5): 1574-1588.
  • 2Yang Lei, Xing Meng-dao, Wang Yong, et al.. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165-169.
  • 3Fornaro G. Trajectory deviations in airborne SAR: analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997-1009.
  • 4Fornaro G, Franceschett G, and Perna S. On center-beam approximation in SAR motion compensation[J]. IEEE Geoscience and Remot Sensing Letters, 2006, 3(2): 276-280.
  • 5杨磊,徐刚,唐禹,李军,邢孟道.包络相位联合自聚焦高分辨SAR运动补偿[J].系统工程与电子技术,2012,34(10):2010-2017. 被引量:1
  • 6Zamparelli V, Perna S, and Fornaro G. An improved topography and aperture dependent motion compensation algorithmiC]. IEEE Geoscience and Remote Sensing Symposium(IGARSS), Munich, 2012: 5805-5808.
  • 7Ding Ze-gang, Liu Luo-si, Zeng Tao, et al.. Improved motioncompensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4378-4387.
  • 8Xu Gang, Xing Meng-dao, Zhang Lei, et al.. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031-5046.
  • 9张英杰,王彦平,谭维贤,洪文.机载前视阵列SAR运动补偿研究[J].雷达学报(中英文),2013,2(2):168-179. 被引量:6
  • 10Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation[M]. Norwood, MA: Artech House, 2005: 322-379.

二级参考文献22

  • 1Dominik B, Guido L, Lorenzo B. Earthquake damage assess ment of buildings using VHR optical and SAR imagery[J]. IEEE Trans. onGeaseiences and Remote Sensing, 2010, 48(5): 2403 - 2420.
  • 2Helko B, Thomas F, Marie L, et al. TerraSAR-X processing and products[J]. IEEE Trans. on Geosciences and Remote Sens- ing, 2010, 48(2): 727-740.
  • 3Evan C Z, David G L. Theory and application of motion compen- sation for LFM-CW SAR[J]. IEEE Trans. on Geosciences and Remote Sensing, 2008, 46(10): 2990-2998.
  • 4Tang Y, Xing M D, Bao Z. The polar format imaging algorithm based on double Chirp-Z transforms[J]. IEEE Geosciences and Remote Sensing Letters, 2008, 5(4) : 610 - 614.
  • 5Wang Y, Zhang Z M, Deng Y K. Squint spotlight SAR raw signal simulation in the frequency domain using optical principle[J]. IEEE Trans. on Geosciences and Re,note Sensing, 2008, 46(8) : 2208- 2215.
  • 6Xing M D, Jiang X W, Wu R B, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Trans. on Geo- sciences and Remote Sensing, 2009, 47(8): 2870 - 2883.
  • 7Piotr S, Krzysztof S K. Coherent map drift technique[J]. IEEE Trans . on Geosciences and Remote Sensing, 2010, 48 (3): 1505 - 1517.
  • 8Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient au tofocus a robust tool for high resolution phase correction[J].IEEE Trans. on Aerospace Electronics System, 1994, 30(3) :827 - 835.
  • 9Chan H L, Yeo T S. Noniterative quality phase-gradient auto focus (QPGA) algorithm for spotlight SAR imagery[J]. IEEE Trans. on Geosciences and Remote Sensing, 1998, 36 (5): 1531-1539.
  • 10Thomas K J, Alaa K A. Monotonic iterative algorithm for minimum-entropy autofocus[ C] // Proc. of the IEEE International Conference on Image Processing, 2006 : 645 - 648.

共引文献5

同被引文献8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部