期刊文献+

二维TiC层表面H_2的化学吸附与物理吸附(英文) 被引量:6

Hydrogen Chemisorption and Physisorption on the Two-Dimensional TiC Sheet Surface
下载PDF
导出
摘要 第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放. The TiC monolayer sheet, a new two-dimensional structure, is proposed as a promising hydrogen storage material because of its high specific surface area and the large number of exposed Ti ions on the surface. First principles calculations showed that both chemisorption and physisorption of H2 can take place on the TiC sheet surface, with adsorption energies of 0.36 and 0.09 eV per H2, respectively. For 1 and 1/4 monolayer (ML) coverages, the dissociation barriers of H2 on the TiC sheet surface were calculated to be 1.12 and 0.33 eV, respectively. Thus, as well as physisorption and chemisorption, there were dissociated H atoms on the TiC sheet surface. The maximum H2 storage capacity was calculated to be up to 7.69% (mass fraction). The capacities were 1.54%, 3.07%, and 3.07% for dissociated H atoms, and chemisorption and physisorption of H2, respectively. Considering only Kubas adsorption, the hydrogen storage capacity was 3.07%. The adsorption energy for H2 chemisorption on the TiC sheet surface only slightly changed at different coverages, which benefits the storage and release of H2.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第10期1821-1826,共6页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(11347138) Talent Training Funds of Quzhou University,China(BSYJ201311)~~
关键词 储氢 第一性原理 过渡金属化合物 二维材料 碳化物 Hydrogen storage First principles Transition metal compound Two-dimensional material Carbide
  • 相关文献

参考文献4

二级参考文献61

  • 1许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210. 被引量:83
  • 2Grochala, W.; Edwards, E E Chem. Rev. 2004, 104 (3), 1283. doi: 10.1021/cr030691s.
  • 3Schlapbach, L.; Ziittel, A. Nature 2001, 414, 353. doi: 10.1038/ 35104634.
  • 4Reilly, J. J.; Wiswall, R. H. Inorg. Chem. 1968, 7, 22544.
  • 5Yang, H. B.; Yuan, H. T.; Ji, J. T.; Sun, H.; Zhou, Z. X.; Zhang, Y. S..J. Alloy. Compd. 2002, 330, 640. doi: 10.1016/S0925-8388 (01)01535-3.
  • 6Kalisvaart, W. P.; Harrower, C. T.; Haagsma, J.; Zahiri, B.; Luber, E. J.; Ophus, C.; Poirier, E.; Fritzsche, H.; Mitlin, D. Int. J. Hydrog. Energy 2010, 35, 2091. doi: 10.1016/j.ijhydene. 2009.12.013.
  • 7Fan, C.; Ju, X.; Wan, C. Int. J. Hydrog. Energy 2010, 35, 8044. doi: 10.1016/j.ijhydene.2010.02.117.
  • 8Garcia, G. N.; Abriata, J. E; Sofo, J. O. Phys. Rev. B 2002, 65, 064306. doi: 10.1103/PhysRevB.65.064306.
  • 9Michiel, J. V. S.; Gilles, A. D. W.; Geert, B. Phys. Rev. B 2007, 76, 75125. doi: 10.1103/PhysRevB.76.075125.
  • 10Jasen, E V.; Gonzalez, E. A.; Brizuela, G.; Nagel, O. A.; Gonzhlez, G. A.; Juan, A. Int. J. Hydrog. Energy 2007, 32, 4943. doi: 10.1016/j.ijhydene.2007.08.011.

共引文献19

同被引文献32

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部