期刊文献+

花瓣状微球MoS_2/石墨烯复合材料的制备及其电化学性能 被引量:4

Synthesis and Electrochemical Properties of MoS_2/Graphene Composites with Petal-Shaped Microspheres
下载PDF
导出
摘要 采用有利于二维层状结构形成的L-半胱氨酸作为硫源,钼酸钠作为钼源,制备聚乙烯基吡咯烷酮(PVP)辅助水热合成花瓣状微球形貌的MoS2/还原氧化石墨烯复合电极材料(PVP-MoS2/RGO).X射线衍射(XRD)及透射电子显微镜(TEM)证实,经过PVP的适量添加,MoS2有序堆垛结构的片层数目明显减少.扫描电子显微镜(SEM)显示,添加适量PVP的MoS2/石墨烯材料具有分散性更好的花瓣状微球形貌.上述的少层有序堆垛结构及复合材料的良好分散性缩短了MoS2中锂离子的嵌入/脱出路径,使其具有更高的容量、循环稳定性和倍率性能. MoS2/graphene composites were synthesized using L-cysteine and sodium molybdate as the sources of sulfur and molybdenum, and L-cysteine was found to be beneficial for two-dimensional layered structure formation. Polyvinylpyrrolidone (PVP)-assisted hydrothermal synthesis gave petal-shaped MoS2/ reduction of graphene oxide (RGO) composite electrode materials (PVP-MoS2/RGO). X-ray diffraction and transmission electron microscopy confirmed that MoS2 changed to a less ordered layer structure from the multi- layer stacking structure after moderate addition of PVP. Scanning electron microscopy showed that the moderate PVP-assisted MoS2/RGO material had a petal-shaped microsphere morphology with good dispersion. The ordered stacking structure with less layers and good dispersion of the composite materials shorten the embedded in/out path of lithium ions in MoS2, which obviously improved their capacity, cycle stability, and rate performance as lithium ion battery anode materials.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第10期1963-1969,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51202112 51402150) 江苏省自然科学基金(BK20130737) 南京工程学院科研启动基金(YKJ201206)资助项目~~
关键词 花瓣状微球 PVP-MoS2/RGO 容量 循环稳定性 倍率性能 Petal shaped microsphere PVP-MoS2/RGO Capacity Cycle stability Rate performance
  • 相关文献

参考文献37

  • 1朱智,其鲁,李卫,廖细英.新型复合共沉淀法制备高能量/高功率型锂离子二次电池用5V正极材料LiNi_(0.5)Mn_(1.5)O_4及其电化学性能[J].物理化学学报,2014,30(4):669-676. 被引量:8
  • 2Pan, A.; Zhu, T.;Wu, H. B.; Lou, X.W. Chem. Eur. J. 2013, 19(2), 494. doi: 10.1002/chem.201203596.
  • 3Yoshino, A. Angew . Chem. Int. Edit. 2012, 51 (24), 5798. doi: 10.1002/anie.v51.24.
  • 4Pan, A.;Wu, H. B.; Yu, L.; Lou, X.W. Angew. Chem. 2013, 125 (8), 2282. doi: 10.1002/ange.201209535.
  • 5杨文超,毕玉敬,杨邦成,王德宇,施思齐.纳米LiMnPO_4的制备与电化学性能表征[J].物理化学学报,2014,30(3):460-466. 被引量:6
  • 6Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci. 2011, 4(8), 2682. doi: 10.1039/c0ee00699h.
  • 7Xiao, J.;Wang, X.; Yang, X. Q.; Xun, S.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P. Adv. Funct. Mater. 2011, 21 (15), 2840. doi: 10.1002/adfm.201002752.
  • 8Liu, H.; Su, D.; Zhou, R.; Sun, B.;Wang, G.; Qiao, S. Advanced Energy Materials 2012, 2(8), 970. doi: 10.1002/aenm.v2.8.
  • 9Ding, S.; Chen, J. S.; Lou, X.W. Chem. Eur. J. 2011, 17 (47), 13142. doi: 10.1002/chem.201102480.
  • 10Jiang, Z.;Wang, C.; Du, G.; Zhong, Y. J.; Jiang, J. Z. J . Mater. Chem. 2012, 22 (19), 9494.

二级参考文献55

  • 1Terada, Y.;Yasaka, K.; Nishikawa, F.; Konishi, T.;Yoshio, M.; Nakai, I. J. Solid-State Chem. 2001, 156, 286. doi: 10.1006/ jssc.2000.8990.
  • 2Song, M. Y.; Ahn, D. S. SolidState lonics 1998, 112 (1-2), 21. doi: 10.1016/S0167-2738(98)00218-5.
  • 3Kim, J. H.; Myung, S. T.; Sun, Y, K. Electrochim. Acta 2004, 49, 219. doi: 10.1016/j.electacta.2003.07.003.
  • 4Santhanam, R.; Rambabu, B. J. Power Sources 2010, 195, 5442. doi: 10.1016/j.jpowsour.2010.03.067.
  • 5Hagh, N. M.; Amatucci, G. G. J. Power Sources 2010, 195, 5005.
  • 6Liu, G. Q.; Wang, Y. J.; Qi, L.; Li, W.; Chert, H. Electrochim. Aeta 2005, 50 (9), 1965.
  • 7Hwang, B. J.; Wu, Y. W.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R. J. Power Sources 2009, 193, 828. doi: 10.1016/j jpowsour.2009.04.012.
  • 8Lee, Y. S.; Sun, Y. K.; Ota, S.; Miyashita, T.; Yoshio, M. Electrochem. Commun. 2002, 4, 989. doi: 10.1016/S1388-2481 (02)00491-5.
  • 9Fan. Y.; Wang, J.; Ye, X.; Zhang, J. Mater. Chem. Phys. 2007, 103, 19. doi: 10.1016/j.matchemphys.2006.10.006.
  • 10Sun, Y. K.; Oh, S. W.; Yoon, C. S.; Bang, H. J.; Prakash, J. J. Power Sources 2006, 161, 19. doi: 10.1016/j. jpowsour.2006.03.085.

共引文献17

同被引文献24

  • 1董相廷,冯秀丽,王进贤,闫景辉,刘钟馨,洪广言.纳米AgCl水溶胶的制备与表征[J].材料科学与工艺,2005,13(1):45-48. 被引量:3
  • 2冯秀丽,王进贤,董相廷.AgI纳米有机溶胶的制备与表征[J].长春理工大学学报(自然科学版),2006,29(2):88-90. 被引量:2
  • 3李敦钫,郑菁,陈新益,邹志刚.光催化分解水体系和材料研究[J].化学进展,2007,19(4):464-477. 被引量:17
  • 4Mudrak I. Ionic conductivity and interracial interaction in penton/Agl composites [J]. lonics, 2014, 20( 1 ) : 83-88.
  • 5Alekseev I, Kassem M, Fourmentin M, et al. Ionic and electronic transport in AgI-AszTe3 glasses [ J]. Solid State Ionics, 2013, 253: 181-184.
  • 6Ren J, Yan Q, Wagner T, et al. Conductivity study on GeS2-Ga2S3-Agl-Ag chalcohalide glasses [ J ] . Journal of Applied Physics, 2013, 114(2) : 023701.
  • 7Cheng L,Shao M W, Yin K, et al. Agl modified silicon nanowires: synthesis, characterization and properties of ionic conductivity and surface-enhanced Raman scattering [J]. Cryst EngComm, 2012, 14(2): 601-604.
  • 8Shahi K, Wagner J B J. Ionic conductivity and thermoelectric power of pure and A12 03 -dispersed AgI [J]. EhctrochemSoc, 1981, 128: 6-13.
  • 9Lee J S, Adams S, Maier J, Transport and phase transition characteristics in AgI : AI203 composite electrolytes [ J ]. Electrochem Soc, 2000, 147: 2407-2418.
  • 10Baidakov D L. Electrical conduction of chalcogenide CuI- AgI-As2S% and PbI2-AgI-As2S% films obtained by the chemical deposition method [ J ]. Glass Physics and Chemistry, 2013, 39(6): 634-638.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部