期刊文献+

动态目标识别中的实时复杂巡航场景运动检测 被引量:7

Real-time complex cruise scene detection technology in target recognition
下载PDF
导出
摘要 设计并实现了一种适合于工程中动态目标识别应用的实时的复杂巡航场景运动检测技术。首先,对背景和当前帧两幅图像进行卷积处理,提取边缘图像。然后分块计算背景边缘图像的局部熵,根据局部熵大小合理选取配准模型组。采用模型组与当前帧边缘图像的相关性强度及运动偏移量结果,完成场景的运动估计。实验结果表明,本文方法用于红外和可见光图像均十分有效,在分辨率为320×256,帧频50Hz的红外图像以及分辨率为768×576,帧频25Hz的可见光图像中运行时间分别为13、24ms,达到了工程中应用的实时性处理要求。同时,在后续的图像处理中场景运动检测有效剔除了复杂背景图像对目标识别的干扰,可准确检测出运动变化目标。 This paper designs and realizes a real-time motion detection technology for complex cruise scene. The technology is suitable for dynamic target recognition in engineering application. First of all, two images of the background and the current frame are processed by convolution operation and extract the edge images. Then we put parts of background edge image and compute their local entropy. According to the value of the local entropies, we can select reasonable registration model group and compute correlation strength and the value of movement offset. The value is the offset of the model group and the current edge image. We complete scene motion estimation by them. The experimental results show that the method can be used in the infrared and visible images. The infrared image processing time is 13 ms. Its resolution is 320X 256 and frame rate is 50 Hz. The optical image processing time is 24 ms. Its resolution is 768 X 576 and frame rate is 25 Hz. They reach real-time processing requirement of the engineering application. Meanwhile, motion detection of scene effectively excludes the interference of target recognition which is produced by the complex background image. We can accurately detect the movement and changing target.
出处 《液晶与显示》 CAS CSCD 北大核心 2014年第5期844-849,共6页 Chinese Journal of Liquid Crystals and Displays
基金 吉林省科技发展计划项目(No.20130102017JC) 国家高技术研究发展计划(863)(No.2006AA703405F)
关键词 运动检测 局部熵 图像配准 moving detection local entropy image registration
  • 相关文献

参考文献13

二级参考文献45

共引文献50

同被引文献110

  • 1王保丰,李广云,陈继华,唐歌实,于志坚.航天器交会对接中测量靶标的两种设计方法[J].宇航学报,2008,29(1):162-166. 被引量:18
  • 2张春华,陈标,周晓东.运动背景星空图像中小目标的运动轨迹提取算法[J].光学精密工程,2008,16(3):524-530. 被引量:18
  • 3张红颖,张加万,孙济洲.改进Demons算法的非刚性医学图像配准[J].光学精密工程,2007,15(1):145-150. 被引量:22
  • 4MORI G,BELONGIE S,MALIK J. Efficient shape matching using shape contexts[ J]. IEEE,2005 ,27(11) : 1832-1837.
  • 5JURIE F,SCHMID C. Scale-invariant shape features for recognition of object categories[ C]. IEEE International Confer-ence on Computer Vision and Pattern Recognition, Washington DC, USA, June 27- July 2,2004,2 :90-96.
  • 6FERGUS R,PERONA P,ZISSERMAN A. A visual category filter for google images[ C] . European Conference on Comput-er Vision, Prague, Czech Republic, May 11-14 ,2004 ;242-256.
  • 7KUMAR M P,TORR P,ZISSERMAN A. Extending pictorial structures for object recognition[ C ]. The British MachineVision Conference, Manchester,UK,September 10-13 ,2001 :81. 1-81. 10.
  • 8SHOTTON J,BLAKE A,CIPOLLA R. Contour-based learning for object detection[ C] . IEEE International Conference onComputer Vision,Beijing, China,October 17-20,2005,1 :503-510.
  • 9OPELT A’PINZ A,ZISSERMAN A. A boundary-fragment model for object detection[ C]. European Conference on Com-puter Vision,Graz, Austria,May 7-13,2006:575-588.
  • 10ZHU Q H, WANG L M, WU Y,et al. Contour context selection for object detection: a set-to-set contour matching ap-proach [C ]. European Conference on Computer Vision, Marseille,France, October 12-18 ,2008 :774-787.

引证文献7

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部