摘要
基于多场耦合理论,推导出考虑烧蚀的电磁场-温度场耦合的物理方程。利用APDL语言编制相应程序,分析了在考虑电枢烧蚀条件下的电流密度和温度的分布状况。电枢三维烧蚀分布与IAT试验结果分布进行对比结果表明块状电枢在导轨间运动过程中,烧蚀首先发生在导轨与电枢接触面前端边缘。在仅考虑焦耳热情况下,电枢前端烧蚀分布比较一致,电枢两侧边缘差别较大;考虑烧蚀和不考虑烧蚀情况下电磁场和温度场分布存在很大不同。此研究为揭示电磁驱动装置烧蚀机理奠定理论基础。
Based on multi-field coupling theory (assuming that the armature surface wear was mostly melted wear), electromagnetic-temperature field coupled physics equations were derived by use of considering armature erosion. APDL language was used to work out the correspond- ing program, and electromagnetic field and temperature field distribution of armature were ana- lyzed with the help of considering the armature three-dimensional erosion. Finally, armature three-dimensional erosion distribution was compared with the distribution of IAT armature test results, and the results showed that: in the movement of block armature, the erosion firstly occurs in the front contact surface between the guide rail and the armature. Under the condition of only considering the Joule heat, the armature was distributed more consistent, and the difference between the edges on both sides of the armature was larger; under the conditions of consi-dering and not considering the erosion, the distributions of electromagnetic field and tem- perature field were very different. This research can provide theoretical basis for revealing the erosion mechanism of the electromagnetic rail gun.
出处
《火炮发射与控制学报》
北大核心
2014年第3期6-10,共5页
Journal of Gun Launch & Control
基金
国家自然科学基金项目(51307176)
关键词
电气工程
耦合场
烧蚀
ANSYS
转捩
电枢
electrical engineering
coupling field
erosion
ANSYS
transition
armature