期刊文献+

基于多源动态TrAdaBoost的实例迁移学习方法 被引量:9

Instance-based transfer learning method using multi-source dynamic TrAdaBoost
原文传递
导出
摘要 针对源领域数据和目标领域数据分布类似的情况,提出一种基于多源动态TrAdaBoost的实例迁移学习方法.考虑多个源领域知识,使得目标任务的学习可以充分利用所有源领域信息,每次训练候选分类器时,所有源领域样本都参与学习,可以获得有利于目标任务学习的有用信息,从而避免负迁移的产生.理论分析验证了所提算法较单源迁移的优势,以及加入动态因子改善了源权重收敛导致的权重熵由源样本转移到目标样本的问题.研究结果表明,所提算法在2个和3个源领域的迁移学习精确度最高值分别达到90.7%和92.2%,能够得到较高的分类精度,更适于实例迁移学习. This study used the distribution of source data and target data to propose the instance-based transfer learning method on the basis of multi-sources dynamic TrAdaBoost. This paper took multi-domain knowledge into consideration to make the target task learning use all source information. All the source domain samples took part in learning in order to obtain useful information of beneficial target task learning, and avoided negative transfer when training candidate classifier. Theoretical analysis verifies that: the proposed algorithm is better than single-source transfer; and by means of adding the dynamic factor, this algorithm improves the defect that weight entropy to drift from source to target instances. The results show that transfer learning accuracy from two and three domains of the proposed method reaches 90.7 % and 92.2 %, respectively. The proposed method can obtain higher classification accuracy, which is much applicable for instance transfer learning.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2014年第4期713-720,共8页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60974050 61273143) 教育部新世纪优秀人才支持计划项目(NCET-10-0765) 高等学校博士学科点专项科研基金项目(20120095110025) 江苏省普通高校研究生科研创新计划项目(CXLX11-0318)
关键词 多源 TrAdaBoost 实例迁移 迁移学习 multi-source TrAdaBoost, instance transfer transfer learning
  • 相关文献

参考文献16

  • 1王皓,高阳,陈兴国.强化学习中的迁移:方法和进展[J].电子学报,2008,36(B12):39-43. 被引量:27
  • 2YANG Q.An introduction to transfer learning[C] //Proceedings of the 4th Advanced Data Mining and Applications International Conference.Piscataway:IEEE Inc Press,2008.
  • 3MATTHEW E T,PETER S.Transfer learning for reinforcement learning domains:a survey[J] .Journal of Machine Learning,2009(10):1633-1685.
  • 4孟佳娜.迁移学习在文本分类中的应用研究[D].大连:大连理工大学,2011.
  • 5PAN S J,YANG Q.A survey on transfer learning[J] .IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
  • 6朱世松,汪云甲,魏连江.基于时间序列相似性度量的瓦斯报警信号辨识[J].中国矿业大学学报,2012,41(3):474-480. 被引量:14
  • 7徐桂云,陈跃,张晓光,刘云楷.基于选择性集成学习的焊接缺陷识别研究[J].中国矿业大学学报,2011,40(6):949-953. 被引量:1
  • 8陈绍杰,李光丽,张伟,曹文.基于多分类器集成的煤矿区土地利用遥感分类[J].中国矿业大学学报,2011,40(2):273-278. 被引量:10
  • 9DAI Wenyuan,YANG Q,XUE G,et al.Boosting for transfer learning[C] //Proceedings of the 24~(th)International Conference on Machine Learning.New York:Academic Press,2007:193-200.
  • 10PARDOE D,STONE P.Boosting for regression transfer[C] //Proceedings of the 27~(th)International Conference on Machine Learning.Piscataway:IEEE Inc Press,2010:863-870.

二级参考文献70

  • 1柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:58
  • 2王其军,程久龙.瓦斯传感器的故障模式与诊断方法研究[J].煤炭科学技术,2006,34(11):34-36. 被引量:12
  • 3董晓莉,顾成奎,王正欧.基于形态的时间序列相似性度量研究[J].电子与信息学报,2007,29(5):1228-1231. 被引量:34
  • 4韩建峰,杨哲海.组合分类器及其在高光谱影像分类中的应用[J].测绘科学技术学报,2007,24(3):231-234. 被引量:9
  • 5Anderson J R. Cognitive Psychology and Its Applications(third edition) [M]. New York: Freeman, 1990.
  • 6Sutton R S, Barto A G. Reinforcement Learning [M]. Cambridge. MIT Press, 1998.
  • 7Bowling M, Veloso M. Reusing learned policies between similar problems[A]. Proceedings of AI* IA-98 Workshop on New Trends in Robotics [C]. Berlin, Germany: Springer Verlag. 1998.
  • 8Femandez F, Veloso M. Probabilistic policy reuse in a reinforcement learning agent[A]. Proceedings of the Fifth International Conference on Autonomous Agents and Multi-Agent Systems[C]. New York: ACM, 2006.
  • 9Femandez F, Veloso M. Policy reuse for transfer learning across tasks with different state and action spaces[A]. Proceedings of The ICML-06 Workshop on Structural Knowledge Transfer for Machine Learning[ C]. New York: ACM, 2006.
  • 10Bemstein D S. Reusing old policies to accelerate learning on new MDPs[ R]. Amherst: Amherst College, University of Massachusetts, 1999.

共引文献73

同被引文献132

  • 1Shuang Wu,Le Zheng,Wei Hu,Rui Yu,Baisi Liu.Improved Deep Belief Network and Model Interpretation Method for Power System Transient Stability Assessment[J].Journal of Modern Power Systems and Clean Energy,2020,8(1):27-37. 被引量:19
  • 2陈立芳,李兆举,王维民,高金吉.旋转机械不平衡振动自愈调控原理与方法[J].机械工程学报,2021,57(22):416-424. 被引量:3
  • 3易东,许汝福,张蔚,尹全焕.The assessment of the outliers of logistic regression model and its clinical application[J].Journal of Medical Colleges of PLA(China),1995,10(1):61-62. 被引量:1
  • 4Yang Q. An introduction to transfer learning. In: Proceedings of the 4th International Advanced Data Mining and Applications Conference. Berlin, Heidelberg: Springer-Verlag, 2008. 1.
  • 5Taylor M E, Stone P. Transfer learning for reinforcement learning domains: a survey. Journal of Machine Learning, 2009, 10: 1633-1685.
  • 6Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 193-200.
  • 7Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 8Pardoe D, Stone P. Boosting for regression transfer. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10). Haifa, Israel, 2010. 863-870.
  • 9Eaton E, des Jardins M. Set-based boosting for instance-level transfer. In: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops. Miami, FL: IEEE, 2009. 422-428.
  • 10Eaton E. Selective Knowledge Transfer for Machine Learning [Ph.D. dissertation], University of Maryland Baltimore County, USA, 2009.

引证文献9

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部