期刊文献+

基于MB栅格回波强度和改进BPNN的底质分类 被引量:5

Seabed sediment classification Based on Multibeam grid echo intensity and improved BP Neural Network
原文传递
导出
摘要 提出了基于多波束栅格图像和改进神经网络的底质分类方法,研究了多波束栅格回波强度的提取方式和改进的反向传播(BP)神经网络.论述了波束脚印包络内以采样数量进行等角度栅格分配获取回波强度所在位置序列值,并在传统BP神经网络基础上附加动量因子和自适应学习率,同时为激活函数添加斜率和偏置可随误差信号进行修正.改进的BP神经网络不仅可以提高神经元的自适应能力,而且可以明显加快算法的收敛速度.利用提出的方法进行底质分类,实验结果表明,提出的方法显著提高了海底底质分类的分辨率和精度. A method of seabed sediment classification based on multibeam grid image and im- proved BP neural network was proposed. Meanwhile echo intensity data extracted in grid way and improved BP neural network were studied. The locations of echo intensity in multibeam footprint envelope was allocated in equal angle grid way by reference to sampling numbers, and the traditional BP neural network was improved by means of adding momentum factor and a- daptive learning rate,adding slope and offset in the activation function,which were discussed in the paper. The improved B that but also significantly P neural speed up network can not only improve adaptive ability of the neu the co classification was accomplished with it has higher resolution and precision nvergence speed of the algorithm. Then seabed sedi- the proposed method, the experiment results show than traditional classification methods.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2014年第5期956-962,共7页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(41176068 40976061 40776048)
关键词 多波束系统 回波强度提取 自适应学习率 动量BP神经网络 海底底质分类 multibeam echo system echo intensity extraction adaptive learning rate momen-tum BP neural network seabed classification
  • 相关文献

参考文献10

  • 1TOM K,MATS C,RUNE M.Seabed classification using artificial neural networks and other non-parametric methods[C].Bath:Proceedings of the Institute of Acoustics,1993:123-129.
  • 2CHAKRABORTY B,KODAGALI V,BARACHO J.Sea-floor classification using multibeam echo-sounding angular backscatter data:A real-time approach employing hybrid neural network architecture[J].IEEE Journal of Oceanic Engineering,2003,28(1):121-128.
  • 3唐秋华,刘保华,陈永奇,周兴华,丁继胜.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319. 被引量:27
  • 4DIMITRIOS E,ALIREZA A S,MIRJAM S.Improving riverbed sediment classification using backscatter and depth residual features of multi-beam echosounder systems[J].Acoustical Society of America,2012,131(5):3710-3725.
  • 5ZHI Huang,SCOTT L N,JUSTY P W S,et al.Predictive modelling of seabed sediment parameters using ultibeam acoustic data:a case study on the carnarvon shelf,western australia[J].International Journal of Geographical Information Science,2012,26(2):283-307.
  • 6KONGSBERG M A S.EM series multibeam echo sounders datagram sormats[S/OL].Norway,[2010-06-15].http://www.kongsberg.com/.
  • 7MICHALOPOULOU Z H,ALEXANDROU D,MOUSTIER C.Application of neural and statistical classifiers to the problem of seafloor characterization[J].IEEE Journal of Oceanic Engineering,1995,20(3):190-197.
  • 8PAL N R,BEZDECK J C,TSAO E C K.Generalized clustering networks and Kohonen’s self organizing scheme[J].IEEE Transaction on Neural Networks,1993,4(4):549-557.
  • 9金绍华,翟京生,刘雁春,崔高嵩.海底入射角对多波束反向散射强度的影响及其改正[J].武汉大学学报(信息科学版),2011,36(9):1081-1084. 被引量:19
  • 10SMRA D.Instruction manual of simrad triton seabed classification[M].Norway:Simrad Company,1998:1-5.

二级参考文献34

  • 1唐秋华,周兴华,丁继胜,刘保华.学习向量量化神经网络在多波束底质分类中的应用研究[J].武汉大学学报(信息科学版),2006,31(3):229-232. 被引量:11
  • 2唐秋华,周兴华,丁继胜,刘忠臣,杜德文.多波束反向散射强度数据处理研究[J].海洋学报,2006,28(2):51-55. 被引量:41
  • 3潘国富.声学方法进行海底沉积物遥测分类:综述[J].海洋技术,1997,16(1):14-19. 被引量:13
  • 4Simrad K. EM3000 Muhibeam Echo Sounder Operator Manual[R]. Horten, Norway, 1998.
  • 5de Moustier C, Alexandrou D. Angular Dependence of 12-kHz Seafloor Acoustic Backscatter [J]. J Acoust Soc Am,1991,90(1):522-531.
  • 6Lurton X, Dugelay S, Augustin J M. Analysis of Multibeam Echo-Sounder Signals from the Deep Seafloor[J].IEEE Oceans' 94 Conference, Brest, France, 1994.
  • 7Hughes-Clarke J E. The Potential for Seabed Classification Using Backscatter from Shallow Water Multibeam Sonars[J]. Proc Inst of Acoustics, 1993 (15) :381-388.
  • 8Hellequin L, Augustin J M, Lurton X. Postprocessing and Signal Corrections for Multibeam Echo sounder Images [C]. IEEE Oceans ' 97 Conference, Halifat, Nova Scotia, 1997.
  • 9Pace N G,Ceen R V. Seabed Classification Using the Backscattering of Normally Incident Broadband Acoustic Pulses [J].Hydrographic Journal, 1984, 26:9-16.
  • 10Somers M L,Stubbs A R. Side Scan Sonar[J]. Proc Inst Elec Eng,1984,131(3): 243-256.

共引文献43

同被引文献95

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部