期刊文献+

分子动力学模拟水分对小分子糖玻璃态转变温度及扩散性质的影响 被引量:4

Effect of Moisture Content on Glass Transition Temperature and Diffusion Properties of Low-molecular-weight Sugars by Molecular Dynamics Simulation
原文传递
导出
摘要 为了预测水分对蔗糖、海藻糖等小分子糖玻璃态温度和扩散系数的影响,在恒温恒压(NPT)系综和COMPASS力场条件下,利用分子动力学模拟方法,通过模拟小分子糖体系在180~460 K温度范围内的比体积,与对应的温度作图,获得不同水分含量下小分子糖的玻璃态转变温度;在298 K下,模拟得到在不同水分含量下糖体系中水分子的均方位移(MSD),分析了水分对小分子糖扩散性质的影响;同时研究了温度为298 K,水分含量为5.0%时,小分子糖体系中氧原子与水中氧原子之间的径向分布函数。研究结果表明:在相同水分含量下,海藻糖的玻璃态转变温度大于蔗糖,海藻糖与水分子形成氢键的能力要大于蔗糖;随着水分含量的增加,两种糖模型的Tg都呈现显著下降趋势,水分子更容易在糖模型中扩散,与糖分子发生相互作用的概率增大。 In this study, the effect of different moisture contents on glass transition temperature (Tg) and diffusion properties of low-molecular-weight sugars (such as sucrose and trehalose) were evaluated, using the COMPASS force field and isothermal-isobaric (NPT) ensemble. Molecular dynamics simulation was used to obtain the glass transition temperatures of sugars by simulating a plot of the specific volume of low-molecular-weight sugar in a temperature range of 180 K to 460 K versus the corresponding temperature. At 298 K, the mean square displacement (MSD) of water molecules in the sugar systems with varying moisture content was simulated, and the effect of moisture content on the diffusion properties was analyzed. In addition, when the temperature was 298K and the moisture content was 5%, the radial distribution function (RDF) of oxygen atoms in water and in the low-molecular-weight sugar system was studied. The results indicated that the value of Tg and the ability to form hydrogen bonds with water molecules were higher for trehalose than for sucrose at the same moisture content. With increasing moisture content, the value of Tg in the two sugar models showed a significant downward trend, water molecules more easily diffused into the sugar systems, and the chance to interact with sugar molecules increased.
出处 《现代食品科技》 EI CAS 北大核心 2014年第9期154-160,165,共8页 Modern Food Science and Technology
基金 国家自然科学基金(31360407) 国家"十二五"科技支撑计划(2012BAD37B02-02)
关键词 分子动力学 玻璃态转变温度 蔗糖 海藻糖 扩散系数 径向分布函数 molecular dynamics glass transition temperature sucrose trehalose diffusion coefficient radial distribution function
  • 相关文献

参考文献28

  • 1Rahman M S. Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature [J]. Journal of Food Engineering, 2010, 99: 402-416.
  • 2Hatley R H M, Blair J A. Stabilisation and delivery of labile materials by amorphous carbohydrates and their derivatives [J]. Journal of Molecular Catalysis B: Enzymatic, 1999, 7(1): 11-19.
  • 3魏长庆,刘文玉,许程剑.淀粉玻璃化转变及其对食品品质影响[J].粮食与油脂,2012,25(1):4-6. 被引量:6
  • 4Simperler A, Komherr A, Chopra 1L et al. The glass Iransition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study [J]. Carbohydrate Research, 2007, 342(11): 1470-1479.
  • 5陈聪,李维仲,宋永臣,翁林岽,张宁.甘油-水-氯化钠三元溶液中甘油浓度对甘油自扩散系数的影响[J].化学学报,2012,70(8):1043-1046. 被引量:6
  • 6Wang P, Anderko A. Modeling self-diffusion in mixed-solvent electrolyte solutions [J]. Industrial & Engineering Chemistry Research, 2003, 42(14): 3495-3504.
  • 7Luo Z, Jiang J. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly (ethylene oxide)/poly (vinyl chloride) blends [J]. Polymer, 2010, 51(1):291-299.
  • 8Momany F A, Willett J L. Molecular dynamics calculations on amylose fragments. I. glass transition temperatures of maltodecaose at 1, 5, 10, and 15.8% hydration [Y]. Biopolymers, 2002, 63(2): 99-110.
  • 9Simperler A, Komherr A, Chopra R, et al. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study [J]. Carbohydrate Research, 2007, 342(11): 1470-1479.
  • 10Simperler A, Komherr A, Chopra R, et al. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study [J]. The Journal of Physical Chemistry B, 2006, 110(39): 19678-19684.

二级参考文献140

  • 1刘子如,张沛.增塑剂对双基推进剂动态力学性能的影响[J].固体火箭技术,2005,28(4):276-279. 被引量:10
  • 2左建国,华泽钊,刘宝林,周国燕,胥义.冻干溶液玻璃化转变温度的实验研究[J].食品科学,2006,27(2):58-60. 被引量:4
  • 3詹世平,陈淑花,刘华伟,李卓,张欣华,孙永正.玻璃化转变与食品的加工、储存和品质[J].食品工业,2006,27(2):51-52. 被引量:2
  • 4孙炜,陈中,吴元欣,黄素逸,张珩,包传平.甲醇水溶液结构和扩散性质的分子动力学模拟[J].武汉理工大学学报,2006,28(7):18-22. 被引量:3
  • 5卞科.食品中的玻璃态研究[J].河南工业大学学报(自然科学版),2006,27(6):1-7. 被引量:9
  • 6Sloan E D. Clathrate Hydrates of Natural Gases. 2nd ed. New York: Marcel Dekker Inc., 1990. 27-64
  • 7Gudmundsson J S. Natural gas hydrate-an alternative to liquefied natural gas? Petro Rev, 1996:232-234
  • 8Rogers R E, Zhong Y. Feasibility of storing natural gas in hydrates commercially. In: Monfort J P, ed. Proceedings of the Second International Conference on Natural Gas Hydrates. Toulouse: Tapir Academic Press, 1996. 843-872
  • 9Chen G, Sun C, Ma C, Guo T. A new technique for separating (hydrogen + methane) gas mixtures using hydrate technology. In: Mori Y H, ed. Proceedings of the Fourth International Conference on Natural Gas Hydrates. Yokohama: Tapir Academic Press, 2002. 1016-1020
  • 10Gudmundsson J S. Hydrates for deep ocean storage of CO2. In: Austvik T, ed. Proceedings of the Fifth International Conference on Gas Hydrates. Trondheim: Tapir Academic Press, 2005. 1135-144

共引文献85

同被引文献29

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部